精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
ax
,且f(1)=2.
(1)求a的值;
(2)判断f(x)的奇偶性,并证明你的结论;
(3)此函数在区间(1,+∞)上是增函数还是减函数?并用定义证明你的结论.
分析:(1)由题意可得 1+
a
1
-2,哟此解得a的值.
(2)由(1)可得fx)=x+
1
x
,求得它的定义域关于原点对称.再由f(-x)=-f(x),可得函数f(x)为奇函数.
(3)此函数在区间(1,+∞)上是增函数,利用函数的单调性的定义证明函数在区间(1,+∞)上是增函数.
解答:解:(1)由题意可得 1+
a
1
-2,解得a=1.
(2)由(1)可得fx)=x+
1
x
,它的定义域为(-∞,0)∪(0,+∞),关于原点对称.
再由f(-x)=-x-
1
x
=-(x+
1
x
)=-f(x),可得函数f(x)为奇函数.
(3)此函数在区间(1,+∞)上是增函数.
证明:设x2>x1>1,可得f(x2)-f(x1)=(x2+
1
x2
)-(x1+
1
x1
)=x2-x1+
x1-x2
x1•x2
=(x2-x1)(1-
1
x1•x2
).
由题设可得x2-x1>0,
1
x1•x2
<1,故 1-
1
x1•x2
>0,∴f (x2)-f(x1)>0,即 f(x2)>f(x1),
故函数在区间(1,+∞)上是增函数.
点评:本题主要考查函数的奇偶性的判断方法,利用函数的单调性的定义证明函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案