分析 在区间(1,2012]中找出所有的“优数”之后用数列的求和公式进行计算.
解答 解:∵an=logn+1(n+2)
∴a1•a2…an=log23•log34…logn+1(n+2)
=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$•$\frac{lg5}{lg4}$ …$\frac{lg(n+2)}{lg(n+1)}$=$\frac{lg(n+2)}{lg2}$=log2(n+2)
若使log2(n+2)为整数,则n+2=2k
在(1,2012]内的所有整数分别为:22-2,23-2,…,210-2
∴所求的数的和为22-2+23-2+…+210-2=$\frac{4(1{-2}^{9})}{1-2}$-18=2026.
故答案为:2026.
点评 本题考查了对数的运算性质,考查了数列和的求法,把a1•a2…an化简转化为对数的运算是解答的关键,体现了转化的思想,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | 2017 | C. | $\frac{1}{2016}$ | D. | $\frac{1}{2017}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{4}$,$\frac{1}{4}$,$\frac{1}{4}$) | B. | ($\frac{3}{4}$,$\frac{3}{4}$,$\frac{3}{4}$) | C. | ($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$) | D. | ($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (-1,+∞) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com