精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2(x+
π
12
)+sinxcosx
,.
(1)求f(x)的最小正周期和图象的对称中心;
(2)若存在x0∈[-
π
4
π
2
],使得不等式f(x0)<m成立,求m的取值范围.
f(x)=
1+cos(2x+
π
6
)
2
+
1
2
sin2x=
1
2
+
1
2
(
3
2
cos2x-
1
2
sin2x)+
1
2
sin2x
=
1
2
+
1
2
sin(2x+
π
3
)

(1)f(x)的最小正周期为π,令2x+
π
3
=kπ
,得x=
2
-
π
6
(k∈Z)

所以函数f(x)的图象的对称中心为(
2
-
π
6
1
2
)(k∈Z)
.(6分)
(2)由x0∈[-
π
4
π
2
],得-
π
6
≤2x0+
π
3
3
,则-
3
2
≤sin(2x0+
π
3
)≤1

于是
1
2
-
3
4
≤f(x0)≤1
,而若存在x0∈[-
π
4
π
2
]使得不等式f(x0)<m成立,
只需m>f(x0min,即m的取值范围为(
1
2
-
3
4
,+∞)
.(6分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案