精英家教网 > 高中数学 > 题目详情
3.已知cos(π-α)=-$\frac{3}{5}$,$\frac{3π}{2}$<α<2π,求tan(2π+α)的值.

分析 由已知利用诱导公式可求cosα的值,由角的范围及同角三角函数基本关系式可求sinα的值,进而可求tanα,利用诱导公式化简所求即可得解.

解答 解:∵cos(π-α)=-$\frac{3}{5}$,$\frac{3π}{2}$<α<2π,
∴cosα=$\frac{3}{5}$,sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,
∴tan(2π+α)=tanα=-$\frac{4}{3}$.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{-{x}^{2}}&{x<0}\end{array}\right.$的反函数是(  )
A.y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x≥0}\\{\sqrt{-x}}&{x<0}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{x}{2}}&{x≥0}\\{-\sqrt{-x}}&{x<0}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{\sqrt{-x}}&{x<0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{2x}&{x≥0}\\{-\sqrt{-x}}&{x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}=(2-t,-3,0)$,$\overrightarrow{b}=(1,t,-2)$,t∈R,则$|\overrightarrow{a}+\overrightarrow{b}|$的最小值是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.3个人要坐在一排的8个空座位上,若每个人左右都有空座位,求不同坐法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC中D是AB的中点,O是三角形的重心,则$\overrightarrow{DO}$=$-\frac{1}{6}$($\overrightarrow{CA}$+$\overrightarrow{CB}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1-x+x2)(x+$\frac{1}{x}$)5的展开式中x3的系数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在倾斜角等于30°的山坡上竖立一根旗杆,当太阳在山顶上方时,从山脚看太阳的仰角是60°,旗杆此时在山坡上的影子长是25米,则旗杆高为(  )
A.25米B.12.5米C.22米D.30米

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2lnx-ax,g(x)=x2,若函数f(x)在(2,f(2))处的切线与函数g(x)在(2,g(2))处的切线互相平行,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为$\frac{\sqrt{5}}{10}$.则E的离心率e=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案