精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点为F1,F2,且离心率为
3
2

(1)若过F1的直线交椭圆E于P,Q两点,且
PF1
=3
F1Q
,求直线PQ的斜率;
(2)若椭圆E过点(0,1),且过F1作两条互相垂直的直线,它们分别交椭圆E于A,C和B,D,求四边形ABCD面积的最大值和最小值.
分析:(1)利用椭圆的第二定义,构建三角形,求得三边长,即可求得直线PQ的斜率;
(2)求出椭圆方程,当AC为2a,DB⊥x轴时,面积有最大值,最大值为2;当两条直线斜率都存在时,求出AC,BD的长,表示出四边形ABCD面积为S=
1
2
|AC||BD|,利用基本不等式,即可求得结论.
解答:解:(1)设椭圆的左准线为l,作PD⊥x轴于D,作PN⊥l于N,由第二定义得|PN|=
2
3
3
|PF1|.
作QM⊥l于M,得|QM|=
2
3
3
|F1Q|=
2
3
9
|PF1|,
作QE⊥PN于E,交轴于点A得|EP|=4|AF1|=
4
3
9
|PF1|,
∴|F1D|=3|AF1|=
3
3
|PF1|,
∴|PD|=
6
3
|PF1|,
∴直线PQ的斜率为±
|PF1|
|F1D|
=±
2

(2)由题意,b=1,又
c
a
=
3
2
,∴a=2,b=1,c=
3

∴椭圆方程为
x2
4
+y2=1

∵DB、AC为过焦点的两条直线,∴当AC为2a,DB⊥x轴时,面积有最大值,最大值为2;
当两条直线斜率都存在时,F1(-
3
,0),设直线AC的方程为y=k(x-
3

与椭圆联立消去y,(
1
4
+k2
)x2-2
3
k2
x+3k2-1=0
设A(x1,y1),C(x2,y2),则x1+x2=
2
3
k2
1
4
+k2
,x1x2=
3k2-1
1
4
+k2

∴|AC|=
1+k2
|x1-x2|=
1+k2
×
(x1+x1)2-4x1x2
=
k2+1
1
4
+k2

同理可得|BD|=
4+4k2
k2+4

∴四边形ABCD面积为S=
1
2
|AC||BD|=
1
2
×
2+k2+
1
k2
17
16
+
1
4
(k2+
1
k2
)

令t=k2+
1
k2
,则t≥2,∴S=
1
2
×
2+t
17
16
+
1
4
t
=2×
2+t
17
4
+t
=2(1-
9
4
17
4
+t

∵t≥2,∴0<
9
4
17
4
+t
9
25
,∴
32
25
≤S<2
∴四边形ABCD面积最小值为
32
25
点评:本题考查椭圆的第二定义,考查直线与椭圆的位置关系,考查四边形面积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于8
2
,椭圆四个顶点组成的菱形的面积为8
2

(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)为圆心,以a-c为半径作圆F1,过点B2(0,b)作圆F1的两条切线,设切点为M、N.
(1)若过两个切点M、N的直线恰好经过点B1(0,-b)时,求此椭圆的离心率;
(2)若直线MN的斜率为-1,且原点到直线MN的距离为4(
2
-1),求此时的椭圆方程;
(3)是否存在椭圆E,使得直线MN的斜率k在区间(-
2
2
,-
3
3
)内取值?若存在,求出椭圆E的离心率e的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
 (1)求椭圆E的方程;
 (2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个交点为F1(-
3
,0)
,而且过点H(
3
1
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+y2=1
(a>1)的离心率e=
3
2
,直线x=2t(t>0)与椭圆E交于不同的两点M、N,以线段MN为直径作圆C,圆心为C
(Ⅰ)求椭圆E的方程;
(Ⅱ)当圆C与y轴相切的时候,求t的值;
(Ⅲ)若O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

同步练习册答案