精英家教网 > 高中数学 > 题目详情

【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x+a|﹣2a,其中a∈R.
(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;
(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.

【答案】
(1)解:当a=﹣2时,不等式f(x)≤2x+1为|x﹣2|﹣2x+3≤0.

x≥2时,不等式化为x﹣2﹣2x+3≤0,即x≥1,∴x≥2;

x<2时,不等式化为﹣x+2﹣2x+3≤0,即x≥ ,∴ ≤x≤2,

综上所述,不等式的解集为{x|x≥ };


(2)解:x∈R,不等式f(x)≤|x+1|恒成立,即|a+a|﹣|x+1|≤2a恒成立,

∵|a+a|﹣|x+1|≤|a﹣1|,

∴|a﹣1|≤2a,∴


【解析】(1)当a=﹣2时,分类讨论,即可求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,|a+a|﹣|x+1|≤2a恒成立,求出左边的最大值,即可求a的取值范围.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x2+alnx(a<0).
(1)若函数f(x)的图象在点(2,f(2))处的切线斜率为 ,求实数a的值;
(2)求f(x)的单调区间;
(3)设g(x)=x2﹣(1﹣a)x,当a≤﹣1时,讨论f(x)与g(x)图象交点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC的对边分别为abc,2acosC=bcosC+ccosB

(1)求角C的大小;

(2)若c=a2+b2=10,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.

(1)求椭圆E的标准方程与离心率;

(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)过点P(2,1),且离心率为
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足 ,直线PM、PN分别交椭圆于A,B.
(i)求证:直线AB过定点,并求出定点的坐标;
(ii)求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于的不等式在区间上有解,则实数的取值范围为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为,圆与直线相交于两点,且为坐标原点),则实数的值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过原点O(0,0)且与直线y=2x﹣8相切于点P(4,0).

(1)求圆C的方程;

(2)已知直线l经过点(4, 5),且与圆C相交于MN两点,若|MN|=2,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a>0),且f(1)=2;
(1)求a和f(x)的单调区间;
(2)f(x+1)﹣f(x)>2.

查看答案和解析>>

同步练习册答案