精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos2x+
3
sin2x+a(a∈R)

(1)若x∈R,求f(x)的单调递增区间;
(2)若x∈[0,
π
2
]
时,f(x)的最大值为4,求a的值,并指出这时x的值.
分析:(1)先利用二倍角公式降幂,再利用辅助角公式化一角一函数,就可借助基本正弦函数的单调区间来求函数f(x)的单调递增区间.
(2)由(1)可知函数f(x)=2sin(2x+
π
6
)+1+a
,利用所给x的范围,即可带着参数a求出f(x)的最大值,再与所给最大值4比较,就可求出a的值.
解答:解:(1)f(x)=
3
sin2x+cos2x+1+a=2sin(2x+
π
6
)+1+a

解不等式2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2

kπ-
π
3
≤x≤kπ+
π
6
(k∈Z)

∴f(x)的单调增区间为[kπ-
π
3
kπ+
π
6
](k∈Z)

(2)∵x∈[0,
π
2
],∴
π
6
≤2x+
π
6
6

∴当2x+
π
6
=
π
2
x=
π
6
时,f(x)max=3+a.
∵3+a=4,∴a=1,此时x=
π
6
点评:本题主要考查了正弦函数单调性,值域的判断,属于三角函数的常规题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案