分析 (1)利用二倍角公式以及两角和与差正弦函数,化简求解即可.
(2)利用正弦函数的单调性化简求解单调区间,然后求解函数的周期.
(3)通过角的范围,求出相位的范围,利用正弦函数的最值求解即可.
解答 解:(1)$f(x)=\frac{{\sqrt{6}}}{2}sinx+\sqrt{2}(\frac{1+cosx}{2})$=$\sqrt{2}(\frac{{\sqrt{3}}}{2}sinx+\frac{1}{2}cosx)+\frac{{\sqrt{2}}}{2}$=$\sqrt{2}sin(x+\frac{π}{6})+\frac{{\sqrt{2}}}{2}$
(2)令$2kπ+\frac{π}{2}≤x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,
解得$2kπ+\frac{π}{3}≤x≤2kπ+\frac{4π}{3}$,
∴f(x)单调递减区间为$[{2kπ+\frac{π}{3},2kπ+\frac{4π}{3}}]$,k∈Z.
∵f(x)的最小正周期为2π,
∴|f(x)|的最小正周期为2π(注意,因为上移了,所以|f(x)|周期没有改变)
(3)由$\frac{π}{4}≤x≤\frac{7π}{6}$得$\frac{5π}{12}≤x+\frac{π}{6}≤\frac{4π}{3}$,
∴$-\frac{{\sqrt{3}}}{2}≤sin({x+\frac{π}{6}})≤1$
故当x=$\frac{7π}{6}$时,f(x)有最小值$\frac{{\sqrt{2}-\sqrt{6}}}{2}$;
当x=$\frac{π}{3}$时,f(x)有最大值$\frac{{3\sqrt{2}}}{2}$.
点评 本题考查两角和与差的三角函数,正弦函数的最值以及单调性三角函数的周期的求法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{{e}^{2}+1}{e}$) | B. | ($\frac{{e}^{2}+1}{e}$,+∞) | C. | (-$\frac{{e}^{2}+1}{e}$,-2) | D. | (2,$\frac{{e}^{2}+1}{e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 无理数是无限不循环小数 | B. | 有限小数或有限循环小数为有理数 | ||
| C. | 无限不循环小数是无理数 | D. | 无限小数为无理数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5-2$\sqrt{2}$ | B. | $\sqrt{5-2\sqrt{2}}$ | C. | 6-3$\sqrt{2}$ | D. | $\sqrt{6-3\sqrt{2}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com