【题目】设点
、
的坐标分别为
和
,动点P满足
,设动点P的轨迹为
,以动点P到点
距离的最大值为长轴,以点
、
为左、右焦点的椭圆为
,则曲线
和曲线
的交点到
轴的距离为_________.
【答案】![]()
【解析】
由动点P满足
,则可得到动点
在以线段
为弦的圆上,由圆的性质可得圆心
为
或
,半径为2,则动点P到点
距离的最大值为4,即可得到椭圆的方程,联立部分曲线
的方程与椭圆方程求解即可
由题,因为动点P满足
,则动点
在以线段
为弦的圆上,
因为点
、
关于
轴对称,则圆心在
轴上,设圆心为
,原点为
,
因为
,所以
,则在
中,
,所以
,
,则圆心
为
或
,
当
时, 曲线
的方程为
;当
时, 曲线
的方程为
;显然,曲线
关于
轴对称,
所以动点P到点
距离的最大值为圆的直径,即
,则长轴长为4,
所以椭圆
为
,
则曲线
与曲线
的图象如下图所示:
![]()
因为曲线
与曲线
均关于
轴对称,所以可只考虑
轴上方形成的交点,
即联立
,消去
得,
,解得
或
(舍),
故曲线
和曲线
的交点到
轴的距离为
,
故答案为:![]()
科目:高中数学 来源: 题型:
【题目】已知抛物线
上一点
到其焦点下的距离为10.
(1)求抛物线C的方程;
(2)设过焦点F的的直线
与抛物线C交于
两点,且抛物线在
两点处的切线分别交x轴于
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完n片金片总共需要的次数为an,可推得a1=1,an+1=2an+1.如图是求移动次数在1000次以上的最小片数的程序框图模型,则输出的结果是( )
![]()
A. 8B. 9C. 10D. 11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标
和
,制成下图,其中“*”表示男同学,“+”表示女同学.
![]()
若
,则认定该同学为“初级水平”,若
,则认定该同学为“中级水平”,若
,则认定该同学为“高级水平”;若
,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.
(I)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;
(Ⅱ)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;
(Ⅲ)试比较这100名同学中,男、女生指标
的方差的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱
的底面边长和侧棱长都为2,
是
的中点.
![]()
(1)在线段
上是否存在一点
,使得平面
平面
,若存在指出点
在线段
上的位置,若不存在,请说明理由;
(2)求直线
与平面
所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,
,过点
的直线
分别与直线
,
交于
,其中点
在第三象限,点
在第二象限,点
;
(1)若
的面积为
,求直线
的方程;
(2)直线
交于
点
,直线
交
于点
,若
直线的斜率均存在,分别设为
,判断
是否为定值?若为定值,求出该定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,
轴为极轴建立极坐标系,曲线
的方程为
(
为参数),曲线
的极坐标方程为
,若曲线
与
相交于
、
两点.
(1)求
的值;
(2)求点
到
、
两点的距离之积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com