【题目】函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则函数y=f(4x﹣x2)的递增区间是
科目:高中数学 来源: 题型:
【题目】设f(x)是(﹣∞,+∞)上的增函数,a为实数,则有( )
A.f(a)<f(2a)
B.f(a2)<f(a)
C.f(a2+a)<f(a)
D.f(a2+1)>f(a)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M={x|x=a2+2a+2,a∈N},N={y|y=b2﹣4b+5,b∈N},则M,N之间的关系是( )
A.MN
B.NM
C.M=N
D.M与N之间没有包含关系
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知U=R,函数y=ln(1﹣x)的定义域为M,N={x|x2﹣x<0},则下列结论正确的是( )
A.M∩N=M
B.M∪(UN)=U
C.M∩(UN)=
D.MUN
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(Ⅰ)当a=﹣1时,求函数f(x)的最大值和最小值;
(Ⅱ)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设e是自然对数的底,a>0且a≠1,b>0且b≠1,则“loga2>logbe”是“0<a<b<1”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛.在下列选项中,互斥而不对立的两个事件是( )
A.“至少有1名女生”与“都是女生”
B.“至少有1名女生”与“至多1名女生”
C.“恰有1名女生”与“恰有2名女生”
D.“至少有1名男生”与“都是女生”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com