【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(Ⅰ)当a=﹣1时,求函数f(x)的最大值和最小值;
(Ⅱ)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.
【答案】解:(Ⅰ)a=﹣1,f(x)=x2﹣2x+2=(x﹣1)2+1;
∵x∈[﹣5,5];
∴x=1时,f(x)取最小值1;
x=﹣5时,f(x)取最大值37;
(Ⅱ)f(x)的对称轴为x=﹣a;
∵f(x)在[﹣5,5]上是单调函数;
∴﹣a≤﹣5,或﹣a≥5;
∴实数a的取值范围为(﹣∞,﹣5]∪[5,+∞)
【解析】(Ⅰ)a=﹣1时,配方得到f(x)=(x﹣1)2+1,从而可以看出x=1时f(x)取最小值,而x=﹣5时取最大值,这样便可得出f(x)的最大值和最小值;(Ⅱ)可以求出f(x)的对称轴为x=﹣a,而f(x)在[﹣5,5]上是单调函数,从而可以得出﹣a≤﹣5,或﹣a≥5,这样便可得出实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】A={sinα,cosα,1},B={sin2α,sinα+cosα,0},且A=B,则sin2009α+cos2009α=( )
A.0
B.1
C.﹣1
D.±1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合P={x∈R|0≤x≤3},Q={x∈R|x2≥4},则P∩(RQ)=( )
A.[0,3]
B.(0,2]
C.[0,2)
D.(0,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={1,a},B={1,2,3},则“a=3”是“AB“的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com