精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前三项依次为t,t-2,t-3.则an=(  )
A、4-(
1
2
)n
B、4-2n
C、4•(
1
2
)n-1
D、4-2n-1
分析:根据等比中项的性质可知:(t-2)2=t(t-3),求出方程的解得到t的值,由t的值求得数列{an}的首项和公比,即可写出数列{an}的通项公式.
解答:解:∵t,t-2,t-3成等比数列,
∴(t-2)2=t(t-3),解得t=4
∴数列{an}的首项为4,公比为
1
2

则数列的通项an=4•(
1
2
)n-1

故选C.
点评:本题主要考查学生掌握等比数列的性质,特别是等比中项的性质,灵活运用等比数列的通项公式化简求值,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案