精英家教网 > 高中数学 > 题目详情
3.已知$cos({π+α})=-\frac{{\sqrt{10}}}{5}$,且$α∈({-\frac{π}{2},0})$,则tanα的值为(  )
A.$-\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{6}}}{2}$D.-$\frac{\sqrt{6}}{2}$

分析 已知等式左边利用诱导公式化简,求出cosα的值,再由α的范围,利用同角三角函数间的基本关系求出sinα的值,即可求出tanα的值.

解答 解:∵cos(π+α)=-cosα=-$\frac{\sqrt{10}}{5}$,
∴cosα=$\frac{\sqrt{10}}{5}$,
∵α∈(-$\frac{π}{2}$,0),
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{\sqrt{15}}{5}$,
则tanα=$\frac{sinα}{cosα}$=$\frac{-\frac{\sqrt{15}}{5}}{\frac{\sqrt{10}}{5}}$=-$\frac{\sqrt{6}}{2}$,
故选:D.

点评 此题考查了诱导诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.函数f(x)=sin2x+2acosx-a-3.
(I)当a=2时,求f(x)最大值.
(Ⅱ)若f(x)的最大值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C1的圆心在坐标原点O,且恰好与直线${l_1}:x-y-2\sqrt{2}=0$相切.
(1)求圆O的标准方程;
(2)设点A为圆O上一动点,AN⊥y轴于N,若点Q满足$\overrightarrow{OQ}=m\overrightarrow{OA}+(1-m)\overrightarrow{ON}$,(其中m为非零常数),试求点Q的轨迹方程C2
(3)在(2)的结论下,当$m=\frac{{\sqrt{3}}}{2}$时,得到动点Q的轨迹曲线C,与圆x2+(y+1)2=1相切的直线l:y=k(x+t),kt≠0交曲线C于E,F,若曲线C上一点P满足$\overrightarrow{OE}+\overrightarrow{OF}=λ\overrightarrow{OP}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数a,b满足:2b2-a2=2,则|a-3b|的最小值为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设二次函数f(x)=x2+bx+c(b,c∈R),f(1)=0,且1≤x≤3时,f(x)≤0恒成立,f(x)是区间[2,+∞)上的增函数.函数f(x)的解析式是f(x)=x2-4x+3;若|f(m)|=|f(n)|,且m<n<2,u=m+n,u的取值范围是2<u<4-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=asinxcosx+\sqrt{3}a{cos^2}x$,(a为常数且a>0).
(1)若函数的定义域为$[{0,\frac{π}{2}}]$,值域为$[{0,({\frac{{\sqrt{3}}}{2}+1})}]$,求a的值;
(2)在(1)的条件下,定义区间(m,n),[m,n],(m,n],[m,n)的长度为n-m,其中n>m,若不等式f(x)+b>0,x∈[0,π]的解集构成的各区间的长度和超过$\frac{π}{3}$,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“m=2”是“loga2+log2a≥m(a>1)恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x,x>1}\\{(8-a)x-4,x≤1}\end{array}\right.$是R上的增函数,则实数a的取值范围为(  )
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x|2a-x|+2x,a∈R.
(1)若函数f(x)在R上是增函数,求实数a的取值范围;
(2)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有3个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

同步练习册答案