精英家教网 > 高中数学 > 题目详情
11.已知实数a,b满足:2b2-a2=2,则|a-3b|的最小值为$\sqrt{7}$.

分析 2b2-a2=2可化为:b2=$\frac{1}{2}$a2+1,令b=$\frac{1}{cosθ}$,a=$\sqrt{2}$tanθ,则|a-3b|=|$\sqrt{2}$tanθ-$\frac{3}{cosθ}$|,利用换元法,可得答案.

解答 解:2b2-a2=2可化为:b2=$\frac{1}{2}$a2+1,
令b=$\frac{1}{cosθ}$,a=$\sqrt{2}$tanθ,
则|a-3b|=|$\sqrt{2}$tanθ-$\frac{3}{cosθ}$|=$\sqrt{\frac{2{sin}^{2}θ-6\sqrt{2}sinθ+9}{{cos}^{2}θ}}$=$\sqrt{\frac{2{sin}^{2}θ-6\sqrt{2}sinθ+9}{{1-sin}^{2}θ}}$,
令f(x)=$\frac{2{x}^{2}-6\sqrt{2}x+9}{1-{x}^{2}}$,-1<x<1,
则f′(x)=-$\frac{6\sqrt{2}{x}^{2}+22x+6\sqrt{2}}{{(1-{x}^{2})}^{2}}$,
当-1<x<$\frac{\sqrt{2}}{3}$时,f′(x)<0,当$\frac{\sqrt{2}}{3}$<x<1时,f′(x)>0,
故当x=$\frac{\sqrt{2}}{3}$时,f(x)取最小值7,
故|a-3b|的最小值为$\sqrt{7}$,
故答案为:$\sqrt{7}$.

点评 本题考查的知识点是转化思想,复数的模,换元法,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求函数y=2+sinx的最大值、最小值和周期,并求这个函数取最大值、最小值的x值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=cos\frac{x}{3}•(sin\frac{x}{3}+\sqrt{3}cos\frac{x}{3})$.
(1)将f(x)写成Asin(ωx+φ)+B($A>0,ω>0,φ∈({-\frac{π}{2},\frac{π}{2}})$)的形式,并求其最小正周期,图象的对称轴方程,写出奇偶性(不要证明);
(2)若$x∈({0,\frac{π}{3}}]$,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,且bccosA+abcosC=ac2且b=3.
(1)求△ABC的面积的取值范围;
(2)若D是边AC的中点,且△ABC的面积为$\frac{9\sqrt{7}}{8}$,求|$\overrightarrow{BD}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设i为虚数单位,复数$\frac{2i}{1+i}$-2在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.①扇形的周长为8cm,面积为4cm2,则扇形的圆心角(正角)的弧度数是2.
②设a=0.32,b=2 0.3,c=log25,d=log20,3,则a,b,c,d的大小关系是d<a<b<c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$cos({π+α})=-\frac{{\sqrt{10}}}{5}$,且$α∈({-\frac{π}{2},0})$,则tanα的值为(  )
A.$-\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{6}}}{2}$D.-$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线2x+ay+2=0与直线ax+(a+4)y-1=0平行,则a的值为4或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示椭圆,则t的取值范围是(  )
A.1<t<4B.t<1或t>4C.t>4D.1<t<$\frac{5}{2}$或$\frac{5}{2}$<t<4

查看答案和解析>>

同步练习册答案