【题目】已知函数![]()
(1)求证:函数
是偶函数;
(2)当
求函数
在
上的最大值和最小值;
(3)若对于任意的实数
恒有
求实数
的取值范围.
【答案】(1)偶函数;(2)最大值是22,最小值为0;(3)![]()
【解析】试题分析:(1)根据偶函数定义进行证明,首项确定定义域关于原点对称,再证
,(2)利用导数求函数
在
上单调性,根据偶函数得函数
在[,]上单调性,最后根据单调性确定函数最值取法,(3)先求
导函数的导数,再根据
与
分类讨论,利用
以及
进行证明或举反例.
试题解析:(1)函数
的定义域为R,
因为
,
所以函数
是偶函数.
(2)当
时,
,则
,
令
,则
,所以
是增函数,
又
,所以
,所以
在[0,]上是增函数,
又函数
是偶函数,
故函数
在[,]上的最大值是22,小值为0.
(3)
,
令
,则
,
①当
时,
,所以
是增函数,
又
,所以
,所以
在[0,+∞)上是增函数,
而
,
是偶函数,
故
恒成立.
②当
时,
,所以
是减函数,
又
,所以
,所以
在(0,+∞)上是减函数,
而
,
是偶函数,所以
,与
矛盾,故舍去.
③当
时,必存在唯一
(0,),使得
,
因为
在[0,]上是增函数,
所以当x(0,x0)时,
,即
在(0,x0)上是减函数,
又
,所以当x(0,x0)时,
,,即
在(0,x0)上是减函数,
而
,所以当x(0,x0)时,
,与
矛盾,故舍去.
综上,实数a的取值范围是
.
科目:高中数学 来源: 题型:
【题目】在北上广深等十余大中城市,一款叫“一度用车”的共享汽车给市民们提供了一种新型的出行方式.2020年,怀化也将出现共享汽车,用户每次租车时按行驶里程(1元/公里)加用车时间(0.1元/分钟)收费,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:
时间(分钟) |
|
|
|
|
|
次数 | 8 | 14 | 8 | 8 | 2 |
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为
分钟.
(Ⅰ)若李先生上、下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设
是4次使用共享汽车中最优选择的次数,求
的分布列和期望;
(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在平面直角坐标系
中,曲线
的参数方程是
(
为参数,
),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程是
,等边
的顶点都在
上,且点
,
,
依逆时针次序排列,点
的极坐标为
.
(1)求点
,
,
的直角坐标;
(2)设
为
上任意一点,求点
到直线
距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在直角坐标系
中,以原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的参数方程为
(
为参数),曲线
的极坐标方程为
.
(1)写出直线
的普通方程和曲线
的直角坐标方程;
(2)若点
的坐标为
,直线
与曲线
交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
(
)的焦点是椭圆
:
(
)的右焦点,且两曲线有公共点![]()
(1)求椭圆
的方程;
(2)
为坐标原点,
,
,
是椭圆
上不同的三点,并且
为
的重心,试探究
的面积是否为定值.若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
![]()
(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的
列联表,据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
优秀 | 合格 | 合计 | |
大学组 | |||
中学组 | |||
合计 |
注:
,其中
.
| 0.10 | 0.05 | 0.005 |
| 2.706 | 3.841 | 7.879 |
(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.
(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为![]()
,求使得方程组
有唯一一组实数解
的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com