精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求证:函数是偶函数;

(2)求函数上的最大值和最小值;

(3)若对于任意的实数恒有求实数的取值范围.

【答案】(1)偶函数;(2)最大值是22,最小值为0;(3)

【解析】试题分析:(1)根据偶函数定义进行证明,首项确定定义域关于原点对称,再证(2)利用导数求函数上单调性,根据偶函数得函数[]上单调性,最后根据单调性确定函数最值取法,(3)先求导函数的导数,再根据分类讨论利用以及进行证明或举反例.

试题解析:(1)函数的定义域为R,

因为

所以函数是偶函数

(2)时,,则

所以是增函数,

,所以,所以[0,]上是增函数,

又函数是偶函数,

故函数[]上的最大值是22,小值为0.

(3)

①当所以是增函数,

,所以,所以[0,+∞)上是增函数,

是偶函数,

恒成立.

所以是减函数,

,所以,所以(0,+∞)上是减函数,

是偶函数,所以,与矛盾,故舍去

时,必存在唯一(0,),使得

因为[0,]上是增函数,

所以当x(0,x0)时,(0,x0)上是减函数,

,所以当x(0,x0),即(0,x0)上是减函数,

,所以当x(0,x0),与矛盾,故舍去.

综上,实数a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列为单调递增数列,为其前项和,.

(1)求的通项公式;

(2)若为数列的前项和,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在北上广深等十余大中城市,一款叫“一度用车”的共享汽车给市民们提供了一种新型的出行方式.2020年,怀化也将出现共享汽车,用户每次租车时按行驶里程(1元/公里)加用车时间(0.1元/分钟)收费,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:

时间(分钟)

次数

8

14

8

8

2

以各时间段发生的频率视为概率假设每次路上开车花费的时间视为用车时间范围为分钟.

(Ⅰ)若李先生上、下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设4次使用共享汽车中最优选择的次数,求的分布列和期望

(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点依逆时针次序排列,点的极坐标为.

(1)求点的直角坐标;

(2)设上任意一点,求点到直线距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,直线的参数方程为为参数),曲线的极坐标方程为.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)若点的坐标为,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与四边形相交于平面的中点,.

(1)求证:平面

(2)求直线与平面成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列中,已知,且构成等比数列的前三项.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)的焦点是椭圆)的右焦点,且两曲线有公共点

(1)求椭圆的方程;

(2)为坐标原点,是椭圆上不同的三点,并且的重心,试探究的面积是否为定值.若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.

(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.

查看答案和解析>>

同步练习册答案