精英家教网 > 高中数学 > 题目详情
2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|AF|=6,∠AFB=90°,则C的离心率e=$\frac{5}{7}$.

分析 由已知条件,利用解直角三角形求出|BF|,再利用椭圆的对称性质能求出椭圆的离心率.

解答 解:如图所示,
在△AFB中,|AB|=10,|AF|=6,∠AFB=90°,
∴|BF|2=|AB|2-|AF|2=100-36=64,
∴|BF|=8,
设F′为椭圆的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形.
∴|BF′|=|AF|=6,|FF′|=10.
∴2a=8+6=14,2c=10,解得a=7,c=5,
∴e=$\frac{c}{a}$=$\frac{5}{7}$,
故答案为:$\frac{5}{7}$.

点评 本题考查椭圆的离心率的求法,解题时要认真审题,注意椭圆的对称性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={-1,3},试用列举法表示A+B;
(2)设a1=$\frac{2}{3}$,当n∈N*,且n≥2时,曲线$\frac{x^2}{{{n^2}-n+1}}+\frac{y^2}{1-n}=\frac{1}{9}$的焦距为an,如果A={a1,a2,…,an},B=$\{-\frac{1}{9},-\frac{2}{9},-\frac{2}{3}\}$,设A+B中的所有元素之和为Sn,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式Sm+Sn-λSk>0恒成立,求实数λ的最大值;
(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.顶点在原点,对称轴是坐标轴,且焦点在直线2x+y-2=0上的抛物线方程是y2=4x或x2=8y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A,B,若∠AOB=120°(O是坐标原点),则双曲线C的离心率为(  )
A.2B.3C.$\frac{1}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,已知a2=-10,a3+a7=-8,当Sn取得最小值时,n的值为(  )
A.5B.6C.7D.6或7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,边长为a的正方形最长的网格中,设椭圆C1,C2,C3的离心率分别为e1,e2,e3,则(  )
A.e1=e2<e3B.e1<e2=e3C.e1=e2>e3D.e2=e3<e1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为E,过F1于x轴垂直的直线与椭圆C相交,其中一个交点为M(-$\sqrt{3}$,$\frac{1}{2}$).
(I)求椭圆C的方程;
(II)设直线l与椭圆C交于不同的两点A,B.
(i)若直线l过定点(1,0),直线AE,BE的斜率为k1,k2(k1≠0,k2≠0),证明:k1•k2为定值;
(ii)若直线l的垂直平分线与x轴交于一点P,求点P的横坐标xp的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A={x|x≤7},B={x|x>2},则A∩B={x|2<x≤7}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(文科)已知m∈R,集合A={m|m2-am<12a2(a≠0)};集合B={m|方程$\frac{{x}^{2}}{m+4}$+$\frac{{y}^{2}}{8-m}$=1表示焦点在y轴上的椭圆},若“m∈A”是“m∈B”的充分不必要条件,求a的取值范围.

查看答案和解析>>

同步练习册答案