【题目】已知椭圆
的短轴长为2,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)过椭圆
的上焦点作相互垂直的弦
,
,求
为定值.
【答案】(1)
(2)![]()
【解析】
(1)由题意得到b,a,即可得结果.
(2)通过分直线AB、CD中有一个斜率不存在与均存在两种情况讨论.当直线AB、CD中有一个斜率不存在时,通过计算可知|AB|=
、|CD|=
,进而可得结论;当直线AB、CD斜率均存在时,设直线AB方程为:y=k(x
),则直线CD方程为:y
(x
),通过联立直线与椭圆方程、利用韦达定理、两点间距离公式计算可知|AB|
,进而计算可得结论.
(1)由题意可知
,
.又椭圆
的离心率为
,则
,
故椭圆
的方程为![]()
(2)当直线
的斜率不存在或为零时,![]()
当直线
的斜率存在,且不为零时,设直线
的方程为
,
,
,
联立
消去
,整理得
,
则
,
,
故
.
同理可得:
,
∴
![]()
科目:高中数学 来源: 题型:
【题目】为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额
(亿元)与该地区粮食产量
(万亿吨)之间存在着线性相关关系.统计数据如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
补贴额 | 9 | 10 | 12 | 11 | 8 |
粮食产量 | 23 | 25 | 30 | 26 | 21 |
(1)请根据如表所给的数据,求出
关于
的线性回归直线方程
;
(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.
(参考公式:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中
中,直线
,圆
的参数方程为
为参数),以坐标原点为极点,以
轴正半轴为极轴,建立极坐标系.
(1)求直线
和圆
的极坐标方程;
(2)若直线
与圆
交于
两点,且
的面积是
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等腰梯形ABCD(如图1所示),其中AB∥CD,E,F分别为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点.现将梯形ABCD沿着EF所在直线折起,使平面EFCB⊥平面EFDA(如图2所示),N是线段CD上一动点,且
.
![]()
(1)求证:MN∥平面EFDA;
(2)求三棱锥A-MNF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,点
关于直线
对称的点
位于抛物线
上.
(1)求抛物线
的方程;
(2)设抛物线
的准线与其对称轴的交点为
,过点
的直线
交抛物线
于点
,
,直线
交抛物线
于另一点
,求直线
所过的定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
(
为参数),曲线
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立直角坐标系.
(1)求曲线
的极坐标方程,直线
的普通方程;
(2)把直线
向左平移一个单位得到直线
,设
与曲线
的交点为
,
,
为曲线
上任意一点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某工厂生产线上随机抽取16件零件,测量其内径数据从小到大依次排列如下:1.12,1.25,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42.据此可估计该生产线上大约有25%的零件内径小于等于___________㎜,大约有30%的零件内径大于___________mm(单位:mm).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
满足(1)对于定义域上的任意
,恒有
;(2)对于定义域上的任意
当
时,恒有
,则称函数
为“理想函数”,给出下列四个函数中:①
; ②
;③
;④
,则被称为“理想函数”的有( )
A.①B.②④C.③D.④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com