精英家教网 > 高中数学 > 题目详情

(本题满分16分)已知直线

(1)求证:不论实数取何值,直线总经过一定点.

(2)为使直线不经过第二象限,求实数的取值范围.

(3)若直线与两坐标轴的正半轴围成的三角形面积最小,求的方程.

 

【答案】

(1)直线方程整理得:所以直线恒过定点

(2) (3)

【解析】

试题分析:(1)直线方程整理得:所以直线恒过定点

(2)当a=2时,直线垂直x轴。当时由(1)画图知:斜率

综上:  

(3)由题知令y=0则,令x=0则.所以

所以当时三角形面积最小,

考点:本题考查了直线方程的运用

点评:求直线方程的一般步骤:(1)寻找所求直线的满足的两个条件(2)将条件转化,使转化后的条件更利于列出方程组(3)列方程组求解

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题

(本题满分16分)
已知函数,且对任意,有.
(1)求
(2)已知在区间(0,1)上为单调函数,求实的取值范围.
(3)讨论函数的零点个数?(提示)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数为实常数).

(I)当时,求函数上的最小值;

(Ⅱ)若方程在区间上有解,求实数的取值范围;

(Ⅲ)证明:

(参考数据:

 

查看答案和解析>>

科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题

(本题满分16分) 已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.

 ⑴求椭圆的方程;

⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数是定义在上的偶函数,且当时,

(Ⅰ)求的值;

(Ⅱ)求函数上的解析式;

(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案