精英家教网 > 高中数学 > 题目详情
数列{an}的通项公式为an=(-1)n-1(4n-3),则S100等于______.
由题意可得:数列{an}的通项公式为an=(-1)n-1•(4n-3),
所以a1=1,a2=-5,a3=9,a4=-13,…a99=393,a100=-397,
所以S100=(a1+a2)+(a3+a4)+…+(a99+a100),
所以S100=-(4+4+…+4)=-200.
故答案为:-200.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

数列中,,当时,等于的个位数,若数列 前项和为243,则=    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是首项为1的等差数列,其公差d>0,且a3,a7+2,3a9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:a1+
a2
2
+
a3
22
+…+
an
2n-1
<4
(n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列{an}的前n项和公式是Sn,若an=
1
n(n+2)
,则S8等于(  )
A.
29
45
B.
45
29
C.
5
9
D.
3
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是等差数列,且a1=1,a1+a2+a3=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an2n.求数列{bn}前n项和的公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科)已知数列{an}的前n项和Sn满足Sn=
a
a-1
(an-1)(a为常数且a≠0,a≠1,n∈N*)

(1)求数列{an}的通项公式;
(2)记bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值;
(3)在满足(2)的条件下,记Cn=
1
1+an
+
1
1-an+1
,设数列{Cn}的前n项和为Tn,求证:Tn>2n-
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

1
1×3
+
1
2×4
+
1
3×5
+
1
4×6
+…+
1
n(n+2)
=(  )
A.
1
n(n+2)
B.
1
2
(1-
1
n+2
C.
1
2
3
2
-
1
n+1
-
1
n+2
D.
1
2
(1-
1
n+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1).
(Ⅰ)求a2,a3的值;
(Ⅱ)证明数列{an}是等比数列,写出数列{an}的通项公式;
(Ⅲ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列中,,则数列的前项的绝对值之和为(    )
                               

查看答案和解析>>

同步练习册答案