精英家教网 > 高中数学 > 题目详情
已知数列{an}是等差数列,且a1=1,a1+a2+a3=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an2n.求数列{bn}前n项和的公式.
(Ⅰ)设公差为d,
∵a1+a2+a3=6.a1=1,
∴3a1+3d=6,解得d=1,
∴数列{an}的通项公式an=n.
(Ⅱ)∵an=n,bn=an2n
bn=an2n=n•2n
Sn=1×2+2×22+3×23+???+n?2n
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①式减去②式,得(1-2)Sn=(2+22+…2n)-n×2n+1=
2×(1-2n)
1-2
-n×2n+1

Sn=2n+1(n-1)+2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设函数定义如下表,数列满足,则      .
x
1
2
3
4
5

4
1
3
5
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列{an},{bn}的通项公式分别是an=n,bn=2n,则数列{an•bn}的前100项的和为(  )
A.99×2101+2B.99×2101-2C.100×2101+2D.100×2101-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}的通项公式为an=(-1)n-1(4n-3),则S100等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知公差d不为0的等差数列{an}中,a1=1,且a1,a3,a7成等比数列.
(1)求通项an及前n项和Sn
(2)若有一新数列{bn},且bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设an(n=2,3,4…)是(3+
x
)n
展开式中x的一次项的系数,则
2010
2009
(
32
a2
+
33
a3
+…+
32010
a2010
)
的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(文)Sn=1-2+3-4+5-6+…+(-1)n+1•n,则S100+S200+S301等于(  )
A.1B.-1C.51D.52

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}是公差大于零的等差数列,已知a1=2,a3=a22-10.
(1)求{an}的通项公式;
(2)设数列{bn}是以函数f(x)=4sin2πx的最小正周期为首项,以3为公比的等比数列,求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(文)数列{an}中an=,前n项和为Sn,则使Sn<-5成立的自然数n有
A.最大值63B.最大值31C.最小值63D.最小值31

查看答案和解析>>

同步练习册答案