精英家教网 > 高中数学 > 题目详情
化简下列各式:
(1)
cos(α-
π
2
)
sin(
2
+α)
•sin(
π
2
-α)cos(2π+α);
(2)sin2
π
3
+α)+sin2
π
6
-α).
考点:运用诱导公式化简求值,同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)利用诱导公式化简后,再利用二倍角的正弦即可化为最简;
(2)利用(
π
3
+α)+(
π
6
-α)=
π
2
及平方关系式即可得到答案.
解答: 解:(1)原式=
sinα
cosα
•cosα•cosα=
1
2
sin2α;
(2)∵(
π
3
+α)+(
π
6
-α)=
π
2

∴原式=sin2
π
3
+α)+cos2
π
3
+α)=1.
点评:本题考查运用诱导公式化简求值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;命题q:在△ABC中,“A>B”是“sinA>sinB”的充分条件;则下列命题是真命题的是(  )
A、p且qB、p或¬q
C、¬p且¬qD、p或q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x
.若a>0,函数h(x)=x•f(x)-x-ax2在(0,2)上有极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有两个函数f1(x)=loga(x-3a)与f2(x)=loga
1
x-a
,其中a>0,a≠1.
(1)求函数F(x)=f1(x)-f2(x)的表达式与定义域;
(2)给出如下定义:“对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意x∈[m,n],有|f(x)-g(x)|≤1,则称f(x)与g(x)在区间[m,n]上是接近的,否则称f(x)与g(x)在区间[m,n]上是非接近的.”若0<a<1,试讨论f1(x)与f2(x)在给定区间[a+2,a+3]上是否是接近的.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
2
2
,计算下列各式的值:
(1)sinα-cosα;                
(2)
1
sin2α
+
1
cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}前n项和为Sn且a2+a3=10,S6=42
(1)求{an}通项公式.
(2)设数列{bn}前n项和为Tn,且
1
bn
=a1+a2+…an,若Tn<m恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
4x
4x+2
,若0<a<1,试求:
(1)求f(a)+f(1-a)的值;
(2)求f(
1
4011
)+f(
2
4011
)+f(
3
4011
)+…+f(
4010
4011
)的值;
(3)求f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a2-a1=8,且a4为a2和a3的等比中项,求数列{an}的首项、公差及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,2cosx),
b
=(sin(π-2x),
3
cosx),x∈R,且f(x)=
a
b

(Ⅰ)求f(
π
6
);
(Ⅱ)求f(x)的最小正周期及单调递增区间.

查看答案和解析>>

同步练习册答案