精英家教网 > 高中数学 > 题目详情
11.已知⊙O:x2+y2=2,⊙M:(x+2)2+(y+2)2=2,点P的坐标为(1,1).
(1)过点O作⊙M的切线,求该切线的方程;
(2)若点Q是⊙O上一点,过Q作⊙M的切线,切点分别为E,F,且∠EQF=$\frac{π}{3}$,求Q点的坐标;
(3)过点P作两条相异直线分别与⊙O相交于A,B,且直线PA与直线PB的倾斜角互补,试判断直线OP与AB是否平行?请说明理由.

分析 (1)设切线方程为:y=kx,则$\frac{|-2k+2|}{{\sqrt{{k^2}+1}}}=\sqrt{2}$$⇒k=2±\sqrt{3}$,即可求该切线的方程;
(2)题知,∠EQF=$\frac{π}{3}$,即QM=2ME,求出Q的轨迹方程,即可求Q点的坐标;
(3)求出A,B的坐标,利用斜率公式证明kAB=kOP⇒直线OP与AB平行.

解答 解:(1)设切线方程为:y=kx,则$\frac{|-2k+2|}{{\sqrt{{k^2}+1}}}=\sqrt{2}$$⇒k=2±\sqrt{3}$
⇒切线方程为$y=(2+\sqrt{3})x$或$y=(2-\sqrt{3})x$;
(2)由题知,∠EQF=$\frac{π}{3}$,即QM=2ME,设Q(x,y),则Q的轨迹为:$\left\{\begin{array}{l}{(x+2)^2}+{(y+2)^2}=8\\{x^2}+{y^2}=2\end{array}\right.⇒\left\{\begin{array}{l}x=\frac{{3-\sqrt{15}}}{4}\\ y=\frac{{-1+\sqrt{15}}}{4}\end{array}\right.或\left\{\begin{array}{l}x=\frac{{-1+\sqrt{15}}}{4}\\ y=\frac{{-1-\sqrt{15}}}{4}\end{array}\right.$
即$Q(\frac{{-1-\sqrt{15}}}{4},\frac{{-1+\sqrt{15}}}{4})或Q(\frac{{-1+\sqrt{15}}}{4},\frac{{-1-\sqrt{15}}}{4})$
(3)由题设lPA:y-1=k(x-1)则lPB:y-1=-k(x-1)
由$\left\{\begin{array}{l}y-1=k(x-1)\\{x^2}+{y^2}=2\end{array}\right.⇒(1+{k^2}){x^2}+2k(1-k)x+{(1-k)^2}-2=0$$⇒{x_A}=\frac{{{k^2}-2k-1}}{{1+{k^2}}}$;
同理${x_B}=\frac{{{k^2}+2k-1}}{{1+{k^2}}}$$⇒{k_{AB}}=\frac{{{y_B}-{y_A}}}{{{x_B}-{x_A}}}=\frac{{-k({x_A}+{x_B})+2k}}{{{x_B}-{x_A}}}=1$
又kOP=1⇒kAB=kOP⇒直线OP与AB平行.

点评 本题考查轨迹方程,考查直线与圆位置关系的运用,考查斜率的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.观察如图所示的正方形图案,每条边(包括两个端点)有n(n≥2,n∈N*)个圆点,第n个图案中圆点的总数是Sn.按此规律推断出Sn与n的关系式为(  )
A.Sn=2nB.Sn=4nC.Sn=2nD.Sn=4n-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在平行四边形ABCD中,AB=4,AD=2,∠DAB=60°,点M在线段DC上,且满足$\overrightarrow{DM}$=$\frac{1}{4}$$\overrightarrow{DC}$,若N是平行四边形ABCD内的任意一点(含边界),则$\overrightarrow{AM}•\overrightarrow{AN}$的取值范围是[0,13].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sinxcosx+2$\sqrt{3}{cos^2}$x.
(1)求函数f(x)的最小正周期;
(2)当$x∈[{-\frac{π}{3},\frac{π}{3}}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.两圆(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16的公切线有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x(x-c)2在x=3处有极大值,则c=(  )
A.9B.3C.3或9D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\frac{1}{2}$x2-9lnx在区间[a-1,a+1]上单调递减,则实数a的取值范围是(  )
A.(1,2]B.[4,+∞)C.(-∞,2]D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,点D满足$\overrightarrow{BC}$=3$\overrightarrow{BD}$,则(  )
A.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,将正六边形ABCDEF中的一半图形ABCD绕AD翻折到AB1C1D,使得∠B1AF=60°.G是BF与AD的交点.
(Ⅰ)求证:平面ADEF⊥平面B1FG;
(Ⅱ)求直线AB1与平面ADEF所成角的正弦值.

查看答案和解析>>

同步练习册答案