【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长
(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.
![]()
(1)求图中
的值;
(2)估计该校担任班主任的教师月平均通话时长的中位数;
(3)在
,
这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.
【答案】(1)
(2)390分钟. (3) ![]()
【解析】
(1)根据频率分布直方图中所有矩形的面积和为1,列出方程,即可求解;
(2)设该校担任班主任的教师月平均通话时长的中位数为
,根据频率分布直方图的中位数的计算方法,即可求解.
(3)根据分层抽样,可得在
内抽取
人,分别记为
,在
内抽取2人,记为
,利用古典概型及其概率的计算公式,即可求解.
(1)依题意,根据频率分布直方图的性质,可得:
,解得
.
(2)设该校担任班主任的教师月平均通话时长的中位数为
.
因为前2组的频率之和为
,
前3组的频率之和为
,
所以
,由
,得
.
所以该校担任班主任的教师月平均通话时长的中位数为390分钟.
(3)由题意,可得在
内抽取
人,分别记为
,
在
内抽取2人,记为
,
则6人中抽取2人的取法有:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共15种等可能的取法.
其中抽取的2人恰在同一组的有
,
,
,
,
,
,
,共7种取法,
所以从这6人中随机抽取的2人恰在同一组的概率
.
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①若函数
满足
,则函数
的图象关于直线
对称;
②点
关于直线
的对称点为
;
③通过回归方程
可以估计和观测变量的取值和变化趋势;
④正弦函数是奇函数,
是正弦函数,所以
是奇函数,上述推理错误的原因是大前提不正确.
其中真命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C=
,△ABC的面积为4
,求c.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过
的前提下认为喜好体育运动与性别有关?说明你的理由.
(参考公式:
)
临界值表
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
的离心率与双曲线
的离心率互为倒数,且椭圆的长轴长为4.
(1)求椭圆
的标准方程;
(2)若直线
交椭圆
于
,
两点,
(
)为椭圆
上一点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:方程x2-2mx+m=0没有实数根;命题q:x∈R,x2+mx+1≥0.
(1)写出命题q的否定“
q”.
(2)如果“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且f(x﹣
)=f(x+
)恒成立,当x∈[2,3]时,f(x)=x,则当x∈(﹣2,0)时,函数f(x)的解析式为( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(Ⅱ)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:,K2=![]()
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com