精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=
 
考点:函数的周期性
专题:函数的性质及应用
分析:由已知可得f(1)=1,f(2)=2,f(3)=-1,f(4)=0,f(5)=-1,f(6)=0,根据函数的周期性可得:f(1)+f(2)+f(3)+…+f(2 012)=335×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)+f(2),代入可得答案.
解答: 解:∵当-3≤x<-1时,f(x)=-(x+2)2
∴f(-3)=-1,f(-2)=0,
∵当-1≤x<3时,f(x)=x,
∴f(-1)=-1,f(0)=0,f(1)=1,f(2)=2,
又∵f(x+6)=f(x).
故f(3)=-1,f(4)=0,f(5)=-1,f(6)=0,
又∵2012=335×6+2,
故f(1)+f(2)+f(3)+…+f(2 012)=335×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)+f(2)=335+1+2=338,
故答案为:338
点评:本题考查的知识点是函数的周期性,数列求和,按周期分组求和是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的前n项和为Sn,若S5=25,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)bn=
1
Sn
(n∈N*),证明:对一切正整数n,有b1+b2+…+bn
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨x2-3x+2=0},B={x丨a-1<x<2a+3},A∩B=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨3≤x<7},B={x丨2<x<10},求∁R(A∪B),∁R(A∩B),(∁RA)∩B,A∪(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
,满足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-x2,x≤1
x2+x-2,x>1
,则f(4)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax+
1-a
x
-1.
(1)当a=1时,求曲线f(x)在x=1处的切线方程;
(2)当a=
1
3
时,求函数f(x)的单调区间;
(3)在(2)的条件下,设函数g(x)=x2-2bx-
5
12
,若对于?x1∈[1,2],?x1∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图(主观图、左视图、俯视图)如图所示,M、N分别为A1B、B1C1的中点.
(1)求证:MN∥平面ACC1A1
(2)求证:MN⊥平面A1BC;
(3)求二面角A-A1B-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产某种产品的月产量y与月份x之间满足关系y=a•0.5x+b.现已知该厂今年1月份、2月份生产该产品分别为1万件、1.5万件.则此工厂3月份该产品的产量为
 
万件.

查看答案和解析>>

同步练习册答案