【题目】已知数列的前项和为,满足.
(1)求证:数列等差数列;
(2)当时,记,是否存在正整数、,使得、、成等比数列?若存在,求出所有满足条件的数对;若不存在,请说明理由;
(3)若数列、、、、、是公比为的等比数列,求最小正整数,使得当时,.
【答案】(1)证明见解析;(2)存在,有且只有一个为;(3).
【解析】
(1)由得出,两式相减,推导出,利用等差中项法可证得数列是等差数列;
(2)由,得出,求出、,可求出等差数列的通项公式,进而可得出,假设存在正整数、,使得,化简得出,变形得出,对的取值进行分类讨论,结合数列的单调性的、的值;
(3)求出、,可求出等差数列的通项公式,由题意得出的表达式,进而可得出,设,计算得出,,,,,,设,利用定义证明数列的单调性,由此可证得当时,,进而可证得结论成立.
(1)由题意得,两式相减得,
则有,
所以.
因为,所以,故数列为等差数列;
(2)因为,,
所以,解得;,即,解得.
所以数列的公差为,所以,故.
假设存在正整数、,使得,,成等比数列,则,
于是(*),所以.
当时,,则,所以是方程(*)的一组解;
当且时,因为,
所以,数列在上单调递减,
所以,此时方程(*)无正整数解.
综上,满足题设的数对有且只有一个,为;
(3)由题意得,解得,
故数列的公差,所以,
故,所以.
又因为,所以,即.
记,
则,,,,,,
猜想:当时,.
验证如下:记,
则
,
所以数列单调递增,故,
所以,故最小正整数的值为.
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDE中,DE∥AB,AC⊥BC,BC=2AC=2,AB=2DE,且D点在平面ABC内的正投影为AC的中点H且DH=1.
(1)证明:面BCE⊥面ABC
(2)求BD与面CDE夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系内,点 在曲线:,(为参数,)上运动,以为极轴建立极坐标系.直线的极坐标方程为.
(Ⅰ)写出曲线的标准方程和直线的直角坐标方程;
(Ⅱ)若直线与曲线相交于两点,点在曲线上移动,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为2的正方形,,为中点,点在上且平面,在延长线上,,交于,且
(1)证明:平面;
(2)设点在线段上,若二面角为,求的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线:(为参数),曲线:(为参数).
(1)设与相交于两点,求;
(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,,分别是椭圆的左、右焦点,直线与椭圆交于不同的两点、,且.
(1)求椭圆的方程;
(2)已知直线经过椭圆的右焦点,是椭圆上两点,四边形是菱形,求直线的方程;
(3)已知直线不经过椭圆的右焦点,直线,,的斜率依次成等差数列,求直线在轴上截距的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com