精英家教网 > 高中数学 > 题目详情
已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足
OP
=
1
3
(
1
2
OA
+
1
2
OB
+2
OC
)
,则点P一定为三角形ABC的(  )
A、AB边中线的中点
B、AB边中线的三等分点(非重心)
C、重心
D、AB边的中点
分析:根据O是三角形的重心,得到三条中线上对应的向量的模长之间的关系,根据向量加法的平行四边形法则,求出向量的和,根据共线的向量的加减,得到结果.
解答:解:设AB 的中点是E,
∵O是三角形ABC的重心,
OP
=
1
3
(
1
2
OA
+
1
2
OB
+2
OC
)
=
1
3
OE
+2
OC

OC
=2
EO

OP
=
1
3
(
OE
+4
EO)
=
1
3
× 3
EO
=
EO

∴P在AB边的中线上,是中线的三等分点,不是重心.
故选B.
点评:本题考查三角形的重心,考查向量加法的平行四边形法则,考查故选向量的加减运算,是一个比较简单的综合题目,这种题目可以以选择或填空出现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C是平面内不共线的三点,P为平面内的动点,且
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)  (λ>0)
,则P的轨迹过△ABC的(  )
A、重心B、垂心C、内心D、外心

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面上不共线上三点,O为△ABC外心,动点P满足:
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
]
(λ∈R且λ≠0),则P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面上不共线的三点,o为平面ABC内任一点,动点P满足等式
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
](λ∈R
且λ≠1,则P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面内互异的三点,O为平面上任意一点,
OC
=x
OA
+y
OB
,求证:
(1)若A,B,C三点共线,则x+y=1;
(2)若x+y=1,则A,B,C三点共线.

查看答案和解析>>

同步练习册答案