已知函数,.
(1)求曲线f(x)在点A处的切线方程;
(II)讨论函数f(x)的单调性;
(III)是否存在实数,使当时恒成立?若存在,求 出实数a;若不存在,请说明理由
(Ⅰ)∵ a>0,,
∴
=, …… 2分
于是,,所以曲线y = f(x)在点A(0,f(0))处的切线方程为,即(a-2)x-ay + 1 = 0. ……… 4分
(Ⅱ)∵ a>0,eax>0,∴ 只需讨论的符号. ………… 5分
ⅰ)当a>2时,>0,这时f ′(x)>0,所以函数f(x)在(-∞,+∞)上为增函数.
ⅱ)当a = 2时,f ′(x)= 2x2e2x≥0,函数f(x)在(-∞,+∞)上为增函数.…6分
ⅲ)当0<a<2时,令f ′(x)= 0,解得,.
当x变化时, f '(x)和f(x)的变化情况如下表:
x |
|||||
f '(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
↗ |
极大值 |
↘ |
极小值 |
↗ |
∴f(x)在,,为增函数,f(x)在为减函数. …… 9分
(Ⅲ)当a∈(1,2)时,∈(0,1).由(Ⅱ)知f(x)在上是减函数,在上是增函数,故当x∈(0,1)时,,……10分
∴当x∈(0,1)时恒成立,等价于恒成立.……11分
当a∈(1,2)时,,设,则,表明g(t) 在(0,1)上单调递减,于是可得,即a∈(1,2)时恒成立,……13分 符合条件的实数a不存在.
【解析】略
科目:高中数学 来源: 题型:
a |
x |
lnx |
x |
查看答案和解析>>
科目:高中数学 来源: 题型:
a |
x |
3 |
4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com