精英家教网 > 高中数学 > 题目详情
如图,梯形BCDE中,DE∥BC,CD⊥DE,ED=DC=
2
,AB=BC=2
2
,AB⊥面BCDE,F为AB中点.
求证:
(Ⅰ)EF∥面ACD;
(Ⅱ)CE⊥面ABE;
(Ⅲ)求三棱锥D-AEC的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)取AC中点G,连接FG,DG,证明四边形FGDE是平行四边形,可得FE∥GD,即可证明EF∥面ACD;
(Ⅱ)取BC中点K,连接EK,证明CE⊥BE,AB⊥CE,即可证明CE⊥面ABE;
(Ⅲ)利用VD-AEC=VA-DEC,求三棱锥D-AEC的体积.
解答: (Ⅰ)证明:取AC中点G,连接FG,DG,则FG∥BC,FG=
1
2
BC,
∵DE∥BC,DE=
1
2
BC,
∴DE∥GF,DE-GF,
∴四边形FGDE是平行四边形,
∴FE∥GD,
∵FE?面ACD,GD?面ACD,
∴EF∥面ACD;
(Ⅱ)证明:取BC中点K,连接EK,则四边形EDCK是正方形,
∴EK=CD=ED=
2
且CD⊥ED,
∴CE=2.
在Rt△EKB中,KC=BK=EK=
2

∴BE=2,
∵BC=2
2

∴BE2+CE2=BC2
∴∠BEC=90°,即CE⊥BE,
∵AB⊥面BCDE,
∴AB⊥CE,
∵AB∩BE=B,
∴CE⊥面ABE;
(Ⅲ)解:VD-AEC=VA-DEC=
1
3
S△DCE×AB
=
1
3
×
1
2
×
2
×
2
×2
2
=
2
2
3
点评:本题主要考查线面平行的判定定理,线面垂直的判定定理,考查三棱锥D-AEC的体积,正确运用线面平行的判定定理,线面垂直的判定定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一份数学试卷由25个选择题构成,每个选择题有4个选项,其中有且仅有1个选项是正确的,每题选正确得4分,不选或选错得0分,满分100分.小强选对任一题的概率为0.8,则他在这次考试中得分的期望为(  )
A、60分B、70分
C、80分D、90分

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cos(x-
π
6
),-2sin(x-
π
4
)),
b
=(cos(x-
π
6
),-sin(x+
π
4
)),f(x)=
a
b
-2.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-
π
12
π
12
]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx,
2
cosx-1),
b
=(
3
sinx,
2
cosx+1),函数f(x)=
a
b
,x∈R.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的
1
2
,把所得到的图象再向左平移
π
6
单位,得到函数y=g(x)的图象,求函数y=g(x)在区间[0,
π
8
]
上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某省示范性高中应届毕业班有3名男生和1名女生获得了同一名牌大学的自主招生校荐资格,根据这几位考生的实际情况,估计这3名男生能通过该大学自主招生考试的概率都是
1
2
,这1名女生通过的概率是
1
3
,且这4人是否通过考试互不影响.已知通过考试的男生有a人,女生有b人.
(Ⅰ)求a=b的概率;
(Ⅱ)记ξ=a=b,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一名箭手进行射箭训练,箭手连续射2支箭,已知射手每只箭射中10环的概率是
1
4
,射中9环的概率是
1
4
,射中8环的概率是
1
2
,假设每次射箭结果互相独立.
(1)求该射手两次射中的总环数为18环的概率;
(2)设该箭手两次射中的总环数为ζ,求ζ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
1
2
AD=1,CD=
3

(1)求证:平面PQB⊥平面PAD;
(2)设PM=2MC,求二面角M-BQ-C的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=ax2+x,a∈R.
(1)若函数φ(x)=f(x)-g(x)在其定义域内是单调增函数,求a的取值范围;
(2)设函数φ(x)的图象被点P(2,φ(2))分成的两部分为C1,C2.该函数图象在点P处的切线为l,且C1、C2位于直线l的两侧,试求所有满足条件的a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是一个公差小于0的等差数列,且满足a3a7=-27,a2+a8=6
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,在由所有前n项和Sn组成的数列{Sn}中,哪一项最大,最大项是多少?

查看答案和解析>>

同步练习册答案