精英家教网 > 高中数学 > 题目详情
一名箭手进行射箭训练,箭手连续射2支箭,已知射手每只箭射中10环的概率是
1
4
,射中9环的概率是
1
4
,射中8环的概率是
1
2
,假设每次射箭结果互相独立.
(1)求该射手两次射中的总环数为18环的概率;
(2)设该箭手两次射中的总环数为ζ,求ζ的分布列和数学期望.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:应用题,概率与统计
分析:(1)由题意知运动员两次射击是相互独立的,根据相互独立事件同时发生的概率,得到该运动员两次都命中18环的概率.
(2)该运动员两次射击中最高环数作为他的成绩记为ξ,确定ξ的可能取值,结合变量对应的事件,写出变量的概率,写出分布列和期望.
解答: 解:(1)由题意知箭手两次射击是相互独立的,
根据相互独立事件同时发生的概率得到该射手两次射中的总环数为18环的概率为
1
16
+
1
4
1
2
=
3
16

(2)ξ的可能取值为20、18、16、19、17
P(ξ=20)=
1
16
;P(ξ=18)=
3
16
;P(ξ=16)=
1
4
;P(ξ=19)=
1
16
;P(ξ=17)=
1
8

∴ξ的分布列为
 ξ 20 18 16 19 17
 P 
1
16
 
3
16
 
1
4
 
1
16
 
1
8

∴ξ的数学期望为Eξ=20×
1
16
+18×
3
16
+16×
1
4
+19×
1
16
+17×
1
8
=
191
16
点评:本题考查离散型随机变量的分布列和期望,考查相互独立事件同时发生的概率,是一个综合题,这类问题的解法实际上不困难,只要注意解题的步骤就可以.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:四面体P-ABC为正四面体,M为PC的中点,则BM与AC所成的角的余弦值为(  ) 
A、
3
2
B、
3
6
C、
1
2
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=-13,
1
an
-
2
anan+1
-
1
an+1
=0,且前n项的和为Sn
(1)证明:数列{an}为等差数列;
(2)求数列{
Sn
n
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

高三某班有两个数学课处兴趣小组,第一组有2名男生,2名女生,第二组有3名男生,2名女生,现在班主任老师要从第一组选出1人,从第二组选出2人,请他们在班会上和全班同学分享学习心得.
(1)求选出的3人均是男生的概率;
(2)求选出的3人中有男生也有女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,梯形BCDE中,DE∥BC,CD⊥DE,ED=DC=
2
,AB=BC=2
2
,AB⊥面BCDE,F为AB中点.
求证:
(Ⅰ)EF∥面ACD;
(Ⅱ)CE⊥面ABE;
(Ⅲ)求三棱锥D-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-3x2+3,定义数列{an}满足a1=3,且an>0,an+1=
-3f(an)+9

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
1
an
,数列{bn}的前n项和为Sn,求证:Sn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,圆C的参数方程为
x=5cosθ
y=5sinθ
(θ为参数),直线l经过点P(3,2),且倾斜角为
π
3

(Ⅰ)写出直线l的参数方程和圆C的标准方程;
(Ⅱ)设直线l与圆C相交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知:平行四边形ABCD是矩形,AB=2,BC=1.PD⊥平面ABCD,且PD=3.
(1)求证:直线BC∥平面PAD;
(2)求直线PB与平面ABCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别为角A、B、C所对的边长,已知:C=
π
3
,a+b=λc(其中λ>1)
(1)当λ=2时,证明:a=b=c;
(2)若
AC
BC
3,求边长c的最小值.

查看答案和解析>>

同步练习册答案