精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a-
12x+1
,(x∈R).
(Ⅰ)求证:不论a为何实数f(x)在(-∞,+∞)上为增函数;
(Ⅱ)若f(x)为奇函数,求a的值;
(Ⅲ)在(Ⅱ)的条件下,求f(x)在区间[1,5)上的最小值.
分析:(I)根据函数的单调性的定义进行判定,任取x1<x2,然后判定f(x1)-f(x2)的符号,从而得到结论;
(II)根据奇函数的定义建立等式关系,解之即可求出a的值;
(III)根据函数在R上单调递增,求出函数f(x)在区间[1,5)上的最小值即可.
解答:解:(Ⅰ)∵f(x)的定义域为R,任取x1<x2
f(x1)-f(x2)=a-
1
2x1+1
-a+
1
2x2+1
=
2x1-2x2
(1+2x1)(1+2x2)

∵x1<x2
2x1-2x2<0,(1+2x1)(1+2x2)>0
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
所以不论a为何实数f(x)总为增函数.(4分)
(Ⅱ)∵f(x)在x∈R上为奇函数,
∴f(0)=0,即a-
1
20+1
=0

解得 a=
1
2
.(8分)
(Ⅲ)由(Ⅱ)知,f(x)=
1
2
-
1
2x+1

由(Ⅰ) 知,f(x)为增函数,
∴f(x)在区间[1,5)上的最小值为f(1).
f(1)=
1
2
-
1
3
=
1
6

∴f(x)在区间[1,5)上的最小值为
1
6
.(12分)
点评:本题主要考查了函数的单调性和奇偶性,以及函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案