精英家教网 > 高中数学 > 题目详情
定义:区间[x2,x1](x1<x2)的长度为x2-x1.已知函数y=|log0.5x|定义域为[a,b],值域为[0,2],则区间[a,b]长度的最小值为
 
分析:根据对数函数的值域确定定义域的取值范围即可得到结论.
解答:解:∵y=f(x)=|log0.5x|,精英家教网
∴f(1)=0,即1∈[a,b],
由|log0.5x|=2得log0.5x=2或log0.5x=-2,
解得x=
1
4
,或x=4.
∵y=|log0.5x|定义域为[a,b],值域为[0,2],
∴当a=
1
4
时,1≤b≤4,
当b=4时,
1
4
≤a≤1

∴当a=
1
4
时,b=1时,区间长度最小为1-
1
4
=
3
4

故答案为:
3
4
点评:本题主要考查函数定义域和值域的应用,利用对数函数的图象和性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论:
①f(x2)-f(x1)>x2-x1
②x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f (
x1+x2
2
).
其中正确结论的序号是
 
(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+
1
x
-2lnx
(x>0).
(Ⅰ)若f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)若定义在区间D上的函数y=g(x)对于区间D上的任意两个值x1、x2,总有不等式
1
2
[g(x1)+g(x2)]≥g(
x1+x2
2
)
成立,则称函数y=g(x)为区间D上的“凸函数”.试证当a≥0时,f(x)为“凸函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1x2
)=f(x1)-f(x2),且当0<x<1时,f(x)<0.
(1)求f(1)的值;   
(2)判断f(x)的单调性;
(3)若f(2)=1,解不等式f(|x|+1)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1x2
)=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断并证明f(x)的单调性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都二模)对于定义在区间D上的函数f(x),若满足对?x1,x2∈D,且x1<x2时都有 f(x1)≥f(x2),则称函数f(x)为区间D上的“非增函数”.若f(x)为区间[0,1]上的“非增函数”且f(0)=l,f(x)+f(l-x)=l,又当x∈[0,
1
4
]时,f(x)≤-2x+1恒成立.有下列命题:
①?x∈[0,1],f(x)≥0;
②当x1,x2∈[0,1]且x1≠x2,时,f(x1)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④当x∈[0,
1
4
]时,f(f(x))≤f(x).
其中你认为正确的所有命题的序号为
①③④
①③④

查看答案和解析>>

同步练习册答案