精英家教网 > 高中数学 > 题目详情
14.已知圆M:(x+m)2+(y+m)2=9上有且仅有两个点到点A(1,2)的距离为2,则实数m的取值范围为-5<m<-2或-1<m<2.

分析 根据题意知:圆M:(x+m)2+(y+m)2=9和以A(1,2)为圆心,2为半径的圆(x-1)2+(y-2)2=4相交,因此两圆圆心距大于两圆半径之差、小于两圆半径之和,列出不等式,解此不等式即可.

解答 解:根据题意知:圆M:(x+m)2+(y+m)2=9和以A(1,2)为圆心,2为半径的圆(x-1)2+(y-2)2=4相交,两圆圆心距d=$\sqrt{(1+m)^{2}+(2+m)^{2}}$,
∴3-2<$\sqrt{(1+m)^{2}+(2+m)^{2}}$<3+2,
∴-5<m<-2或-1<m<2.
故答案为:-5<m<-2或-1<m<2.

点评 本题体现了转化的数学思想,解题的关键在于将问题转化为:圆M:(x+m)2+(y+m)2=9和以A(1,2)为圆心,2为半径的圆(x-1)2+(y-2)2=4相交,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.直线3x+2y=2k+1与直线2x-y=3k的交点在第一象限内时,k的取值范围为(-$\frac{1}{8}$,$\frac{2}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a=3,$b=\sqrt{5}$,A=60°,则cosB=(  )
A.$±\frac{{\sqrt{15}}}{6}$B.$\frac{{\sqrt{15}}}{6}$C.$±\frac{{\sqrt{21}}}{6}$D.$\frac{{\sqrt{21}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$\frac{2-i}{i}$(i为虚数单位)在复平面内对应点的坐标是(  )
A.(2,-1)B.(-2,-1)C.(-1,-2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=sinx+cosx(x∈R).
(1)求函数f(x)的最小正周期和最值;
(2)若f($\frac{π}{12}$)=$\sqrt{2}$sinA,其中A是面积为$\frac{{3\sqrt{3}}}{2}$的锐角△ABC的内角,且AB=2,求边AC和BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\sqrt{x(x-1)}$的定义域为{x|x≥1或x≤0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果a<b<0,那么下列各式一定成立的是(  )
A.a-b>0B.ac<bcC.a2>b2D.$\frac{1}{a}$<$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线$\sqrt{3}$x+y-3=0的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边经过点(-4,3),则sin(π+α)=-$\frac{3}{5}$,cos(π-α)=$\frac{4}{5}$,tan(-α)=$\frac{3}{4}$,sin($\frac{π}{2}$-α)=-$\frac{4}{5}$,cos($\frac{π}{2}$+α)=-$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案