精英家教网 > 高中数学 > 题目详情
19.函数f(x)=$\sqrt{x(x-1)}$的定义域为{x|x≥1或x≤0}.

分析 根据二次根式的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
x(x-1)≥0,解得:x≥1或x≤0,
故函数f(x)的定义域是:{x|x≥1或x≤0},
故答案为::{x|x≥1或x≤0}.

点评 本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(-cosx,cosx),$\overrightarrow{c}$=(-1,0).若x=$\frac{π}{6}$,求向量$\overrightarrow{a}$,$\overrightarrow{c}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2分钟,从D沿着DC走到C用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径的长度为(  )
A.$50\sqrt{5}$B.$50\sqrt{7}$C.$50\sqrt{11}$D.$50\sqrt{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知△ABC三个顶点的坐标分别为A(1,1),B(1,3),C(2,2),对于△ABC(含边界)内的任意一点(x,y),z=ax+y的最小值为-2,则a=(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆M:(x+m)2+(y+m)2=9上有且仅有两个点到点A(1,2)的距离为2,则实数m的取值范围为-5<m<-2或-1<m<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设向量$\overrightarrow{a}$=(sinx,$\sqrt{3}$sinx),$\overrightarrow{b}$=(sinx,cosx),x∈[0,$\frac{π}{2}$].
(Ⅰ)若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,求x的值;
(Ⅱ)设函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$,将f(x)的图象向左平移$\frac{π}{6}$个单位得到函数g(x)的图象,求g(x)的最大值及此时相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow{a}、\overrightarrow{b}$满足:|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,($\overrightarrow{a}-\overrightarrow{b}$)$⊥\overrightarrow{a}$,则$\overrightarrow{a}、\overrightarrow{b}$的夹角是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若直线2x+ay-7=0和直线(a-3)x+y+4=0互相垂直,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知tanα=-$\frac{1}{3}$,求下列各式的值:
(1)$\frac{3sinα+2cosα}{6sinα-5cosα}$;
(2)$\frac{si{n}^{2}α-2co{s}^{2}α}{6sinαcosα+co{s}^{2}α}$;
(3)sin2α-2cos2α

查看答案和解析>>

同步练习册答案