精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(-cosx,cosx),$\overrightarrow{c}$=(-1,0).若x=$\frac{π}{6}$,求向量$\overrightarrow{a}$,$\overrightarrow{c}$的夹角.

分析 求出$\overrightarrow{a}•\overrightarrow{c}$,代入向量的夹角公式计算.

解答 解:$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),∴$\overrightarrow{a}•\overrightarrow{c}$=-$\frac{\sqrt{3}}{2}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{c}$|=1,∴cos<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}|•|\overrightarrow{c}|}$=-$\frac{\sqrt{3}}{2}$,
∴<$\overrightarrow{a}$,$\overrightarrow{c}$>=$\frac{5π}{6}$.

点评 本题考查了平面向量的数量积运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设f(x)为二次函数,且不等式f(x)>0之解为-2<x<4,则f(2x)<0之解为(  )
A.-1<x<2B.x<-1或x>2C.x<-1或x>4D.-4<x<8
E.x<-4或x>8         

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简求值:($\frac{x-1}{{x}^{2}-1}$+$\frac{1}{x+1}$)÷$\frac{4}{{x}^{2}+x}$,其中x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C构成公差小于0的等差数列,则sin2$\frac{A-C}{2}$的取值范围是$(0,\frac{3}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线3x+2y=2k+1与直线2x-y=3k的交点在第一象限内时,k的取值范围为(-$\frac{1}{8}$,$\frac{2}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三棱锥P-ABC中,PA=PB=PC=4,BC=BA=2$\sqrt{2}$,BC⊥BA,P-ABC的各个顶点在一个球面上,则该球的表面积为$\frac{64π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=logax(其中a为常数且a>0,a≠1),满足f($\frac{2}{a}$)>f($\frac{3}{a}$),则f(1-$\frac{1}{x}$)>1的解集是(1,$\frac{1}{1-a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共线向量,$\overrightarrow{a}$=m$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=n$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,且mn≠0,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\frac{m}{n}$等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\sqrt{x(x-1)}$的定义域为{x|x≥1或x≤0}.

查看答案和解析>>

同步练习册答案