精英家教网 > 高中数学 > 题目详情
2.化简求值:($\frac{x-1}{{x}^{2}-1}$+$\frac{1}{x+1}$)÷$\frac{4}{{x}^{2}+x}$,其中x=-2.

分析 利用乘法公式、约分化简代入即可得出.

解答 解:($\frac{x-1}{{x}^{2}-1}$+$\frac{1}{x+1}$)÷$\frac{4}{{x}^{2}+x}$=$\frac{2}{x+1}$×$\frac{x(x+1)}{4}$=$\frac{x}{2}$,
当x=-2时.
原式=$\frac{-2}{2}$=-1.

点评 本题考查了乘法公式、约分化简方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若f(x)=x3-3x+m有且只有一个零点,则实数m的取值范围是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=lg(x+2)(x>-2),当y<0时,x的取值范围是(-2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=cos(2x-$\frac{π}{6}$)-$\sqrt{3}$cos2x.
(1)求函数f(x)的最小值,并求函数f(x)取得最小值时x值的集合;
(2)若f($\frac{1}{2}$α+$\frac{π}{6}$)=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),求sin(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知AB=4,BC=2,CA=3,试求cos∠ACB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若a=20.2,b=log30.3,c=lg2,则a、b、c的大小关系为a>c>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知-$\frac{π}{2}$<x<0,求sinx+cosx+sinxcosx的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(-cosx,cosx),$\overrightarrow{c}$=(-1,0).若x=$\frac{π}{6}$,求向量$\overrightarrow{a}$,$\overrightarrow{c}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2分钟,从D沿着DC走到C用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径的长度为(  )
A.$50\sqrt{5}$B.$50\sqrt{7}$C.$50\sqrt{11}$D.$50\sqrt{19}$

查看答案和解析>>

同步练习册答案