精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+1

(Ⅰ)求函数的定义域;
(Ⅱ)判断该函数在定义域上的单调性,并证明之.
分析:(Ⅰ)根据偶次根号下被开方数大于等于零,列出不等式求出x的范围,再表示出区间;
(Ⅱ)先判断出函数的单调性,再根据单调性定义进行证明,即取值、作差、变形、定号、下结论,其中变形时需要进行分子有理化.
解答:解:(Ⅰ)由x+1≥0得,x≥-1,
则函数的定义域是[-1,+∞);
(Ⅱ)函数f(x)=
x+1
在[-1,+∞)单调递增,
设x1>x2≥-1,
则f(x1)-f(x2)=
x1+1
-
x2+1

=
(
x1+1
-
x2+1
)(
x1+1
+
x2+1
)
x1+1
+
x2+1

=
x1-x2
x1+1
+
x2+1

∵x1>x2≥1,∴x1-x2>0,x2+1≥0,
x1+1
+
x2+1
>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
则函数f(x)=
x+1
在[-1,+∞)单调递增.
点评:本题考查了函数的定义域求法,以及根据单调性定义进行证明,即取值、作差、变形、定号、下结论,对于解析式中出现根号往往需要进行有理化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案