精英家教网 > 高中数学 > 题目详情
2.删除正整数数列1,2,3,…中的所有完全平方数,得到一个新数列.这个新数列的第2005项是(  )
A.2048B.2049C.2050D.2051

分析 由题意可得,这些数可以写为:12,2,3,22,5,6,7,8,32…,第k个平方数与第k+1个平方数之间有2k个正整数,即可得出.

解答 解:由题意可得,这些数可以写为:12,2,3,22,5,6,7,8,32…,
第k个平方数与第k+1个平方数之间有2k个正整数,
而数列12,2,3,22,5,6,7,8,32…452共有2025项,去掉45个平方数后,还剩余1980个数,
所以去掉平方数后第2005项应在2025后的第25个数,即是原来数列的第2050项,即为2050.
故选:C.

点评 本题考查了数列通项公式、平方数,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若曲线f(x)=ax2+$\frac{1}{2}$x+lnx在点(1,f(1))处的切线与y=$\frac{7}{2}$x-1平行,则a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈R,x+1≤0,命题q:?x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m的取值范围为(  )
A.m≥2B.m≤-2C.m≤-2或x≥2D.-2≤m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线l:4x-3y-12=0与圆(x-2)2+(y-2)2=5交于A,B两点,且与x轴、y轴分别交于C,D两点,则(  )
A.2|CD|=5|AB|B.8|CD|=4|AB|C.5|CD|=2|AB|D.3|CD|=8|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|1<2${\;}^{{x^2}-2x-3}}$<32},B={x|log2(x+3)<3}.
(1)求(∁RA)∩B;
(2)若(a,a+2)⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知在平行四边形ABCD中,点M、N分别是BC、CD的中点,如果$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$,那么向量$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$C.$\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f(x)=$\frac{a}{3}$x3+$\frac{1}{2}$x2( a∈R,a≠0).
(1)求 f ( x )的单调区间;
(2)当 x∈[0,1]时,经过函数 f ( x )的图象上任意一点的切线的倾斜角 θ 总在区间[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)内,试求实数 a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=-x2+2ax+1在(1,+∞)上是减函数,则a的取值范围是(  )
A.(-∞,1]B.(-∞,-1]C.[1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知全集U={-2,-1,0,1,2},集合A={-2,-1,1,2},则∁UA={0}.

查看答案和解析>>

同步练习册答案