精英家教网 > 高中数学 > 题目详情
12.若曲线f(x)=ax2+$\frac{1}{2}$x+lnx在点(1,f(1))处的切线与y=$\frac{7}{2}$x-1平行,则a=(  )
A.-1B.0C.1D.2

分析 求得f(x)的导数,可得x=1处切线的斜率,由两直线平行的条件:斜率相等,解方程即可得到所求值.

解答 解:f(x)=ax2+$\frac{1}{2}$x+lnx的导数为f′(x)=2ax+$\frac{1}{2}$+$\frac{1}{x}$,
曲线f(x)=ax2+$\frac{1}{2}$x+lnx在点(1,f(1))处的切线斜率为k=2a+$\frac{1}{2}$+1=2a+$\frac{3}{2}$,
由切线与y=$\frac{7}{2}$x-1平行,可得2a+$\frac{3}{2}$=$\frac{7}{2}$,
解得a=1.
故选:C.

点评 本题考查导数的运用:求切线的斜率,考查两直线平行的条件:斜率相等,正确求导是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知复数$z=\frac{1+ai}{1-i}(a∈R)$,若z为纯虚数,则a的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\sqrt{4+3x-{x}^{2}}$的单调递减区间是(  )
A.(-∞,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.(-1,$\frac{3}{2}$]D.[$\frac{3}{2}$,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=log2x+1的定义域为(  )
A.(0,+∞)B.[0,+∞)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|0<ax-1≤5},B={x|-$\frac{1}{2}$<x≤2},
(Ⅰ)若a=1,求A∪B;
(Ⅱ)若A∩B=∅且a≥0,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,∠ABC=120°,G为线段PC上的点,
(1)证明:BD⊥平面PAC
(2)若G是PC的中点,求DG与平面APC所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一个盒子里装有6张卡片,上面分别写着如下定义域为R的函数:
f1(x)=x+1,f2(x)=x2,f3(x)=sinx,f4(x)=log2($\sqrt{{x^2}+1}$+x),f5(x)=cosx+|x|,f6(x)=xsinx-2.
(1)现在从盒子中任意取两张卡片,记事件A为“这两张卡片上函数相加,所得新函数是奇函数”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是偶函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列,并求其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集为{x|-2≤x≤3},求实数a的值;
(2)在(1)的条件下,若存在实数n使f(n)≤m-f(-n)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.删除正整数数列1,2,3,…中的所有完全平方数,得到一个新数列.这个新数列的第2005项是(  )
A.2048B.2049C.2050D.2051

查看答案和解析>>

同步练习册答案