精英家教网 > 高中数学 > 题目详情
4.在一个盒子里装有6张卡片,上面分别写着如下定义域为R的函数:
f1(x)=x+1,f2(x)=x2,f3(x)=sinx,f4(x)=log2($\sqrt{{x^2}+1}$+x),f5(x)=cosx+|x|,f6(x)=xsinx-2.
(1)现在从盒子中任意取两张卡片,记事件A为“这两张卡片上函数相加,所得新函数是奇函数”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是偶函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列,并求其数学期望Eξ.

分析 (1)利用函数奇偶性的定义即可判断出fi(x)的奇偶性,进而得出概率.
(2)利用古典概率计算公式、乘法原理可得P(ξ=k)(k=1,2,3,4),进而得出分布列与数学期望.

解答 解:(1)由题意得:f3(x),f4(x)是奇函数,
f2(x),f5(x),f6(x)为偶函数,f1(x)为非奇非偶函数,
所以P(A)=$\frac{C_2^2}{C_6^2}=\frac{1}{15}$.
(2)由题意可知,ξ的所有可能取值为1,2,3,4.
P(ξ=1)=$\frac{{∁}_{3}^{1}}{{C}_{6}^{1}}$=$\frac{1}{2}$,P(ξ=2)=$\frac{{∁}_{3}^{1}•{∁}_{3}^{1}}{{∁}_{6}^{1}•{∁}_{5}^{1}}$=$\frac{3}{10}$,P(ξ=3)=$\frac{{∁}_{3}^{1}•{∁}_{2}^{1}•{∁}_{3}^{1}}{{∁}_{6}^{1}{∁}_{5}^{1}{∁}_{4}^{1}}$=$\frac{3}{20}$,
P(ξ=4)=$\frac{{∁}_{3}^{1}{∁}_{2}^{1}{∁}_{3}^{1}}{{∁}_{6}^{1}{∁}_{5}^{1}{∁}_{4}^{1}{∁}_{3}^{1}}$=$\frac{1}{20}$.
所以ξ的分布列为:

ξ1234
P$\frac{1}{2}$$\frac{3}{10}$$\frac{3}{20}$$\frac{1}{20}$
所以Eξ=1×$\frac{1}{2}$+2×$\frac{3}{10}$+3×$\frac{3}{20}$+4×$\frac{1}{20}$=$\frac{7}{4}$.

点评 本题考查了函数奇偶性的判定、古典概率计算公式、乘法原理、随机事件的分布列与数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的半焦距为c,直线l过(c,0),(0,b)两点,若直线l与双曲线的一条渐近线垂直,则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{5}+1$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρ=4cosθ,直线l过点M(1,0)且倾斜角α=$\frac{π}{6}$.
(1)将曲线C的极坐标方程化为直角坐标方程,写出直线l的参数方程;
(2)若直线l与曲线C交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若曲线f(x)=ax2+$\frac{1}{2}$x+lnx在点(1,f(1))处的切线与y=$\frac{7}{2}$x-1平行,则a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,在区间(1,+∞)上为增函数的是(  )
A.y=-2x+1B.$y=\frac{x}{1-x}$C.$y={log_{\frac{1}{2}}}(x-1)$D.y=-(x-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解关于x的不等式ax2+2x-1>0(a为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出如下四个命题:
①若“p且q”为假命题,则p、q均为假命题;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1<1”;
④在△ABC中,“A>B”是“sinA>sinB”的充要条件.
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈R,x+1≤0,命题q:?x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m的取值范围为(  )
A.m≥2B.m≤-2C.m≤-2或x≥2D.-2≤m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f(x)=$\frac{a}{3}$x3+$\frac{1}{2}$x2( a∈R,a≠0).
(1)求 f ( x )的单调区间;
(2)当 x∈[0,1]时,经过函数 f ( x )的图象上任意一点的切线的倾斜角 θ 总在区间[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)内,试求实数 a 的取值范围.

查看答案和解析>>

同步练习册答案