精英家教网 > 高中数学 > 题目详情
19.下列函数中,在区间(1,+∞)上为增函数的是(  )
A.y=-2x+1B.$y=\frac{x}{1-x}$C.$y={log_{\frac{1}{2}}}(x-1)$D.y=-(x-1)2

分析 结合对数函数,二次函数,指数函数的单调性和导数法,分析各个函数的单调性,可得答案.

解答 解:函数y=-2x+1,y′=-ln2•2x<0在区间(1,+∞)上恒成立,故为减函数,
函数$y=\frac{x}{1-x}$,y′=$\frac{1}{(1-{x)}^{2}}$>0在区间(1,+∞)上恒成立,故为增函数,
函数$y=lo{g}_{\frac{1}{2}}(x-1)$在区间(1,+∞)上为减函数,
函数y=-(x-1)2在区间(1,+∞)上为减函数.
故选:B

点评 本题考查的知识点是对数函数,二次函数,指数函数的单调性,利用导数研究函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆C:$\frac{x^2}{9}+\frac{y^2}{b^2}$=1(0<b<3)的左右焦点分别为E、F,过点F的直线交椭圆于A,B两点,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,且$\overrightarrow{AE}$•$\overrightarrow{BE}$=16.
(1)求椭圆C的方程;
(2)设直线x=my+1与椭圆交于不同的两点P,Q,判断在x轴上是否存在定点N,使x轴平分∠PNQ,若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有关正弦定理的叙述:
①正弦定理只适用于锐角三角形;
②正弦定理不适用于直角三角形;
③在某一确定的三角形中,各边与它的对角的正弦的比是定值;
④在△ABC中,sinA:sinB:sinC=a:b:c.其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|0<ax-1≤5},B={x|-$\frac{1}{2}$<x≤2},
(Ⅰ)若a=1,求A∪B;
(Ⅱ)若A∩B=∅且a≥0,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知g(x)=(ax-$\frac{b}{x}$-2a)ex(a>0),若存在x0∈(1,+∞),使得g(x0)+g'(x0)=0,则$\frac{b}{a}$的取值范围是(  )
A.(-1,+∞)B.(-1,0)C.(-2,+∞)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一个盒子里装有6张卡片,上面分别写着如下定义域为R的函数:
f1(x)=x+1,f2(x)=x2,f3(x)=sinx,f4(x)=log2($\sqrt{{x^2}+1}$+x),f5(x)=cosx+|x|,f6(x)=xsinx-2.
(1)现在从盒子中任意取两张卡片,记事件A为“这两张卡片上函数相加,所得新函数是奇函数”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是偶函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列,并求其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知p:|4-x|≤6,q:x2-2x+1≤0(m>0),若非p是非q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的导函数为f'(x),且满足f(x)=3xf'(1)+2lnx,则f'(1)=(  )
A.-eB.-1C.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-mx+m,(m∈R),x∈[0,$\frac{π}{2}$].
(1)讨论函数f(x)的单调性;
(2)若函数f(x)≤0对任意x∈(0,+∞)恒成立,求实数m值;
(3)在(2)的条件下,若0<a<b,证明:$\frac{f(b)-f(a)}{lnb-lna}$<1-a.

查看答案和解析>>

同步练习册答案