精英家教网 > 高中数学 > 题目详情
15.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρ=4cosθ,直线l过点M(1,0)且倾斜角α=$\frac{π}{6}$.
(1)将曲线C的极坐标方程化为直角坐标方程,写出直线l的参数方程;
(2)若直线l与曲线C交于A、B两点,求|AB|的值.

分析 (1)利用极坐标与直角坐标的互化方法,可得曲线C的直角坐标方程,设参数,可得直线l的参数方程;
(2)若直线l与曲线C交于A、B两点,求出圆心到直线的距离,即可求|AB|的值.

解答 解:(1)∵ρ=4cosθ,∴ρ2=4ρcosθ,
∴x2+y2=4x
即(x-2)2+y2=4
所以曲线C的直角坐标方程是(x-2)2+y2=4                …(3分)
又因为直线l过点M(1,0)且倾斜角α=$\frac{π}{6}$
所以直线l的参数方程是$\left\{\begin{array}{l}{x=1+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数),
也就是$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数).…(5分)
(2)由(1)知曲线C的圆心C(2,0),半径r=2
而直线l的斜率$\frac{\sqrt{3}}{3}$,所以直线l的直角坐标方程是x-$\sqrt{3}$y-1=0  …(7分)
圆心到直线的距离d=$\frac{|2-1|}{\sqrt{1+3}}$=$\frac{1}{2}$,∴|AB|=2$\sqrt{4-\frac{1}{4}}$=$\sqrt{15}$     …(10分)

点评 本题考查极坐标与直角坐标、参数方程与普通方程的互化,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.当x>0时,函数$f(x)=x+\frac{1}{x}$的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若-1≤a-b≤1且2≤a+b≤4,则4a-2b的取值范围[-1,7].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\sqrt{4+3x-{x}^{2}}$的单调递减区间是(  )
A.(-∞,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.(-1,$\frac{3}{2}$]D.[$\frac{3}{2}$,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有关正弦定理的叙述:
①正弦定理只适用于锐角三角形;
②正弦定理不适用于直角三角形;
③在某一确定的三角形中,各边与它的对角的正弦的比是定值;
④在△ABC中,sinA:sinB:sinC=a:b:c.其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=log2x+1的定义域为(  )
A.(0,+∞)B.[0,+∞)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|0<ax-1≤5},B={x|-$\frac{1}{2}$<x≤2},
(Ⅰ)若a=1,求A∪B;
(Ⅱ)若A∩B=∅且a≥0,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一个盒子里装有6张卡片,上面分别写着如下定义域为R的函数:
f1(x)=x+1,f2(x)=x2,f3(x)=sinx,f4(x)=log2($\sqrt{{x^2}+1}$+x),f5(x)=cosx+|x|,f6(x)=xsinx-2.
(1)现在从盒子中任意取两张卡片,记事件A为“这两张卡片上函数相加,所得新函数是奇函数”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是偶函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列,并求其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直三棱柱ABC-A1B1C1中,上底面是斜边为AC的直角三角形,E、F分别是A1B、AC1的中点.
(1)求证:EF∥平面ABC;
(2)求证:平面AEF⊥平面AA1B1B.

查看答案和解析>>

同步练习册答案