分析 (1)推导出PA⊥BD,BD⊥AC,由此能证明BD⊥平面PAC.
(2)由PA⊥平面ABCD,得GO⊥面ABCD,∠DGO为DG与平面PAC所成的角,由此能求出DG与平面APC所成的角的正切值.
解答 证明:(1)∵在四棱锥P-ABCD中,PA⊥平面ABCD,![]()
∴PA⊥BD,
设AC与BD的交点为O,
∵AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,
∴BD是AC的中垂线,故O为AC的中点,且BD⊥AC.
而PA∩AC=A,∴BD⊥平面PAC.
解:(2)若G是PC的中点,O为AC的中点,则GO平行且等于$\frac{1}{2}$PA,
故由PA⊥平面ABCD,得GO⊥面ABCD,
∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.
由题意可得GO=$\frac{1}{2}$PA=$\frac{\sqrt{3}}{2}$,
在△ABC中,由余弦定理得:
AC2=AB2+BC2-2AB•BC•cos∠ABC=4+4-2×2×2×cos120°=12,
∴AC=2$\sqrt{3}$,OC=$\sqrt{3}$,
Rt△COD中,OD=$\sqrt{C{D}^{2}-C{O}^{2}}$=2,
∴Rt△GOD中,tan$∠DGO=\frac{OD}{OG}=\frac{4\sqrt{3}}{3}$.
∴DG与平面APC所成的角的正切值为$\frac{4\sqrt{3}}{3}$.
点评 本题考查线面垂直的证明,考查线面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | (-2,-1) | B. | (-1,+∞) | C. | (-1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | ($\frac{2}{3}$,1) | C. | (-∞,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$ | B. | $-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$ | C. | $\overrightarrow a+\frac{1}{2}\overrightarrow b$ | D. | $-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com