精英家教网 > 高中数学 > 题目详情
在△ABC中,已知sinA=2sinBcosc,则△ABC的形状为
等腰三角形
等腰三角形
分析:通过三角形的内角和,以及两角和的正弦函数,化简方程,求出角的关系,即可判断三角形的形状.
解答:解:因为sinA=2sinBcosc,所以sin(B+C)=2sinBcosC,
所以sinBcosC-sinCcosB=0,即sin(B-C)=0,
因为A,B,C是三角形内角,所以B=C.
三角形的等腰三角形.
故答案为:等腰三角形.
点评:本题考查两角和的正弦函数的应用,三角形的判断,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知|
AB
|=4,|
AC
|=1,S△ABC=
3
,则
AB
AC
的值为(  )
A、-2B、2C、±4D、±2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P为线段AB上的点,且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,则xy的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=8,c=18,S△ABC=36
3
,则B等于
B=
π
3
3
B=
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,S△ABC=6
,P为线段AB上的一点,且
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,则
1
x
+
1
y
的最小值为
7
12
+
3
3
7
12
+
3
3

查看答案和解析>>

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

在△ABC中,已知SABC(a2+b2),求ABC

查看答案和解析>>

同步练习册答案