精英家教网 > 高中数学 > 题目详情
已知函数f(x)的解析式为f(x)= 
3x+5  (x≤0)
x+5    (0<x≤1)
-2x+8  (x>1)

(1)画出这个函数的图象;                      
(2)求函数f(x)的最大值.
分析:(1)分段函数的图象要分段画,本题中分三段,每段都为一次函数图象的一部分,利用一次函数图象的画法即可画出f(x)的图象;(2)由图象,数形结合即可求得函数f(x)的最大值
解答:解:(1)函数f(x)的图象由三段构成,每段都为一次函数图象的一部分,其图象如图:
(2)由函数图象,数形结合可知当x=1时,函数f(x)取得最大值6
∴函数f(x)的最大值为6
点评:本题考查了分段函数图象的画法,利用函数图象求函数的最值,数形结合的思想方法,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知函数f(x)的定义域为R,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,f(-2)=1,f(3)=1,则不等式f(x)>1的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(-2,2),其导函数f′(x)=x2+2cosx且f(0)=0,则关于实数x的不等式f(x-2)+f(x2-2x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域D=(-∞,0)∪(0,+∞),且对于任意x1,x2∈D,均有f(x1•x2)=f(x1)+f(x2),且当x>1时,f(x)>0;
(1)求f(1)与f(-1)的值;             
(2)判断函数的奇偶性并证明;
(3)求证:f(x)在(0,+∞)上是增函数;
(4)若f(4)=1,解不等式f(3x+1)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域关于原点对称,且满足以下三个条件:
①x1、x2、x1-x2是定义域中的数时,有f(x1-x2)=
f(x1)f(x2)+1f(x2)-f(x1)

②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)判断f(x1-x2)与f(x2-x1)之间的关系,并推断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,2a)上的单调性,并证明;
(3)当函数f(x)的定义域为(-4a,0)∪(0,4a)时,
 ①求f(2a)的值;②求不等式f(x-4)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•长宁区一模)已知函数f(x)的定义域是{x|x∈R,x≠
k
2
,k∈Z}
,且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,当0<x<
1
2
时,f(x)=3x
(1)求证:f(x+2)=f(x)且f(x)是奇函数;
(2)求当x∈(
1
2
,1)
时函数f(x)的解析式,并求x∈(2k+
1
2
,2k+1)(k∈
Z)时f(x)的解析式;
(3)当x∈(2k+
1
2
,2k+1)
时,解不等式log3f(x)>x2-(2k+2)x+2k+1.

查看答案和解析>>

同步练习册答案