精英家教网 > 高中数学 > 题目详情
12.用反证法证明“△ABC的三边长a,b,c的倒数成等差数列,求证B<$\frac{π}{2}$”假设正确的是(  )
A.角B是锐角B.角B不是锐角C.角B是直角D.角B是钝角

分析 考虑命题的反面,即可得出结论.

解答 解:∵小于的反面是大于等于,
∴“假设”应为B≥$\frac{π}{2}$,即角B不是锐角,
故选:B.

点评 此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.对具有线性相关关系的两个变量x,y,观测得到一组数据如表:
x-8-435
y197-3-9
若y与x的线性回归方程为的值为$\stackrel{∧}{y}$=-2x+$\stackrel{∧}{a}$,则$\stackrel{∧}{a}$的值为1.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的 大小是(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设变量x,y满足约束条件:$\left\{\begin{array}{l}{y≥x}\\{x+3y≤4}\\{x≥-2}\end{array}\right.$,z=x+2y的最大值为(  )
A.3B.4C.-6D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.角α的终边与单位圆交于点($\frac{4}{5}$,-$\frac{3}{5}$),则cos(α-$\frac{π}{2}$)=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{a}$+$\overrightarrow{b}$=(2,-1),$\overrightarrow{a}$=(1,2),则$\overrightarrow{a}$•$\overrightarrow{b}$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.2016年4月15日晚《中国诗词大会》第一季在中央电视台圆满落幕,冠军由来自华东政法大学的殷怡航获得,为了丰富学生的业余生活,某学校以班级为单位组织学生开展古诗词背诵比赛,随机抽取题目,背诵正确加10分,背诵错误减10分,只有“正确”和“错误”两种结果,其中某班级背诵某首诗的正确率为$\frac{2}{3}$,背诵错误率为$\frac{1}{3}$,现记“该班完成n首背诵后总得分”为Sn
(1)求S6=20的概率;
(2)记ξ=|S5|,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆Г:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$),且直线l过椭圆Г的上顶点和左焦点,椭圆中心到直线l的距离等于焦距长的$\frac{1}{4}$.
(1)求椭圆Г的方程;
(2)若一条与坐标轴不平行且不过原点的直线交椭圆Г于不同的两点M、N,点P为线段MN的中点,求证:直线MN与直线OP不垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ADC=90°,AD∥BC,平面PAD⊥底面ABCD,BC=$\frac{1}{2}$AD,PA=AD=AB=2,Q为AD的中点
(1)求证:平面PQB⊥平面PAD;
(2)若直线PA与平面ABCD所成的角为60°,M是棱PC上的点.
①经过M,B作平面α,使直线CD∥α并说明理由;
②若PM=tMC,二面角M-BQ-C的平面角的大小为30°,求AM的长.

查看答案和解析>>

同步练习册答案