·ÖÎö £¨1£©ÍƵ¼³öËıßÐÎBCDQΪƽÐÐËıßÐΣ¬´Ó¶øCD¡ÎBQ£®Çó³öQB¡ÍAD£¬´Ó¶øBQ¡ÍÆ½ÃæPAD£¬ÓÉ´ËÄÜÖ¤Ã÷Æ½ÃæPQB¡ÍÆ½ÃæPAD£®
£¨2£©¢ÙÓÉCD¡ÎBQ£¬µÃCD¡ÎÆ½ÃæMBQ£¬´Ó¶øÆ½ÃæMBQ¼´ÎªÆ½Ãæ¦Á£®
¢ÚÍÆµ¼³öPQ¡ÍAD£¬PQ¡ÍÆ½ÃæABCD£¬ÒÔQΪԵ㽨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÀûÓÃÏòÁ¿·¨ÄÜÇó³öAM£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö13·Ö£©![]()
Ö¤Ã÷£º£¨1£©¡ßAD¡ÎBC£¬BC=$\frac{1}{2}$AD£¬QΪADµÄÖе㣬
¡àËıßÐÎBCDQΪƽÐÐËıßÐΣ¬¡àCD¡ÎBQ£®
¡ß¡ÏADC=90¡ã£¬¡à¡ÏAQB=90¡ã ¼´QB¡ÍAD£®
Ó֡߯½ÃæPAD¡ÍÆ½ÃæABCD£¬ÇÒÆ½ÃæPAD¡ÉÆ½ÃæABCD=AD£¬
¡àBQ¡ÍÆ½ÃæPAD£®¡ßBQ?Æ½ÃæPQB£¬¡àÆ½ÃæPQB¡ÍÆ½ÃæPAD£® ¡£¨4·Ö£©
£¨2£©¢ÙÈçͼ£¬QÊÇADµÄÖе㣬ÔÚÀâPCÉϵÄÈÎÒâȡһµãM£¬
ÒòΪCD¡ÎBQ£¬ÇÒCD?Æ½ÃæMCD£¬
¹ÊCD¡ÎÆ½ÃæMBQ£¬¹ÊÆ½ÃæMBQ¼´ÎªÆ½Ãæ¦Á£®¡£¨7·Ö£©
¢Ú¡ßPA=PD£¬QΪADµÄÖе㣬¡àPQ¡ÍAD£®
¡ßÆ½ÃæPAD¡ÍÆ½ÃæABCD£¬ÇÒÆ½ÃæPAD¡ÉÆ½ÃæABCD=AD£¬
¡àPQ¡ÍÆ½ÃæABCD£®
¡ßÖ±ÏßPAÓëÆ½ÃæABCDËù³ÉµÄ½ÇΪ60¡ã£¬
¡à¡ÏPAQ=60¡ã£¬¡ßPA=2£¬¹ÊAQ=QD=BC=1£¬
Èçͼ£¬ÒÔQΪԵ㽨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
ÔòÆ½ÃæBQCµÄ·¨ÏòÁ¿Îª$\overrightarrow{n}$=£¨0£¬0£¬1£©£¬Q£¨0£¬0£¬0£©£¬P£¨0£¬0£¬$\sqrt{3}$£©£¬B£¨0£¬$\sqrt{3}$£¬0£©£¬C£¨-1£¬$\sqrt{3}$£¬0£©£®
ÉèM£¨x£¬y£¬z£©£¬Ôò$\overrightarrow{PM}$=£¨x£¬y£¬z-$\sqrt{3}$£©£¬$\overrightarrow{MC}$=£¨-1-x£¬$\sqrt{3}-y$£¬-z£©£¬
¡ß$\overrightarrow{PM}=t\overrightarrow{MC}$£¬¡à$\left\{\begin{array}{l}{x=t£¨-1-x£©}\\{y=t£¨\sqrt{3}-y£©}\\{z-\sqrt{3}=t£¨-z£©}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-\frac{t}{1+t}}\\{y=\frac{\sqrt{3}t}{1+t}}\\{z=\frac{\sqrt{3}}{1+t}}\end{array}\right.$£¬¡£¨10·Ö£©
ÔÚÆ½ÃæMBQÖУ¬$\overrightarrow{QB}$=£¨0£¬$\sqrt{3}$£¬0£©£¬$\overrightarrow{QM}$=£¨-$\frac{t}{1+t}$£¬$\frac{\sqrt{3}t}{1+t}$£¬$\frac{\sqrt{3}}{1+t}$£©£¬
¡àÆ½ÃæMBQ·¨ÏòÁ¿Îª$\overrightarrow{m}$=£¨$\sqrt{3}£¬0£¬t$£©£®
¡ß¶þÃæ½ÇM-BQ-CΪ30¡ã£¬cos30¡ã=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{t}{\sqrt{3+0+{t}^{2}}}$=$\frac{\sqrt{3}}{2}$£¬
½âµÃt=3£®
¡àA£¨1£¬0£¬0£©£¬M£¨-$\frac{3}{4}$£¬$\frac{3\sqrt{3}}{4}$£¬$\frac{\sqrt{3}}{4}$£©£¬
AM=$\sqrt{£¨1+\frac{3}{4}£©^{2}+£¨0-\frac{3\sqrt{3}}{4}£©^{2}+£¨0-\frac{\sqrt{3}}{4}£©^{2}}$=$\frac{\sqrt{79}}{4}$£®¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²é̾̾´¹Ö±µÄÖ¤Ã÷£¬¿¼²éÏ߶㤵ÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏòÁ¿·¨µÄºÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ½ÇBÊÇÈñ½Ç | B£® | ½ÇB²»ÊÇÈñ½Ç | C£® | ½ÇBÊÇÖ±½Ç | D£® | ½ÇBÊÇ¶Û½Ç |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÒòΪy=2xÊÇÖ¸Êýº¯Êý£¬ËùÒÔº¯Êýy=2x¾¹ý¶¨µã£¨0£¬1£© | |
| B£® | ²ÂÏëÊýÁÐ$\frac{1}{1¡Á2}$£¬$\frac{1}{2¡Á3}$£¬$\frac{1}{3¡Á4}$£¬¡µÄͨÏʽΪan=$\frac{1}{n£¨n+1£©}$£¨n¡ÊN*£© | |
| C£® | ÓÉ¡°Æ½ÃæÄÚ´¹Ö±ÓÚͬһֱÏßµÄÁ½Ö±Ï߯½ÐС±Àà±ÈÍÆ³ö¡°¿Õ¼äÖд¹Ö±ÓÚÍ¬Ò»Æ½ÃæµÄÁ½Æ½ÃæÆ½ÐС± | |
| D£® | ÓÉÆ½ÃæÖ±½Ç×ø±êϵÖÐÔ²µÄ·½³ÌΪ£¨x-a£©2+£¨y-b£©2=r2£¬ÍƲâ¿Õ¼äÖ±½Ç×ø±êϵÖÐÇòµÄ·½³ÌΪ£¨x-a£©2+£¨y-b£©2+£¨z-c£©2=r2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¡ÏA¡äDB¡Ü¦È£¬¡ÏA¡äCB¡Ü¦È | B£® | ¡ÏA¡äDB¡Ü¦È£¬¡ÏA¡äCB¡Ý¦È | C£® | ¡ÏA¡äDB¡Ý¦È£¬¡ÏA¡äCB¡Ü¦È | D£® | ¡ÏA¡äDB¡Ý¦È£¬¡ÏA¡äCB¡Ý¦È |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| $\overrightarrow x$ | $\overrightarrow y$ | $\overrightarrow w$ | $\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}$ | $\sum_{i=1}^n{{{£¨{w_i}-\overline w£©}^2}}$ | $\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}$ | $\sum_{i=1}^n{£¨{w_i}-\overline w£©£¨{y_i}-\overline y£©}$ |
| 46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com