精英家教网 > 高中数学 > 题目详情

【题目】已知一个口袋有m个白球,n个黑球(m,n ,n 2),这些球除颜色外全部相同。现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).

(1)试求编号为2的抽屉内放的是黑球的概率p;

(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明

【答案】(1)(2)见解析

【解析】试题分析:(1)根据条件先确定总事件数为,而编号为2的抽屉内放的是黑球的事件数为,最后根据古典概型的概率公式即可求概率;(2)先确定最后一个取出的黑球所在抽屉编号的倒数为,所对应的概率,再根据数学期望公式得,利用性质,进行放缩变形: ,最后利用组合数性质化简,可得结论.

试题解析:解:(1)编号为2的抽屉内放的是黑球的概率为: .

(2)随机变量X的概率分布为:

X

P

随机变量X的期望为:

.

所以

.

点睛:求解离散型随机变量的数学期望的一般步骤为:

(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;

(2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;

(3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;

(4)“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某大学一年级女生中,选取身高分别是150cm、155cm、160cm、165cm、170cm的学生各一名,其身高和体重数据如表所示:

身高/cm(x)

150

155

160

165

170

体重/kg(y)

43

46

49

51

56


(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,计算身高为168cm时,体重的估计值 为多少?
参考公式:线性回归方程 = x+ ,其中 = = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC底面边长为6,底边BC在平面α内,绕BC旋转该三棱锥,若某个时刻它在平面α上的正投影是等腰直角三角形,则此三棱锥高的取值范围是(

A.(0, ]
B.(0, ]∪[ ,3]
C.(0, ]
D.(0, ]∪[3, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:不等式选讲]

已知函数fx)=–x2+ax+4,gx)=│x+1│+│x–1│.

(1)当a=1时,求不等式fx)≥gx)的解集;

(2)若不等式fx)≥gx)的解集包含[–1,1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,BC=2,原点O是BC的中点,点A的坐标为 ( ,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.

(1)求向量 的坐标
(2)求向量 的夹角的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.
(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求证:平面CBE⊥平面EDB;
(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,设F(x)=x2f(x),则F(x)是(
A.奇函数,在(﹣∞,+∞)上单调递减
B.奇函数,在(﹣∞,+∞)上单调递增
C.偶函数,在(﹣∞,0)上递减,在(0,+∞)上递增
D.偶函数,在(﹣∞,0)上递增,在(0,+∞)上递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知 =
(1)求角C的大小;
(2)若c=2,求△ABC面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:

(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50kg

箱产量≥50kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).

附:

查看答案和解析>>

同步练习册答案