精英家教网 > 高中数学 > 题目详情
已知直线l的方程y=k(x-1)+1,圆C的方程为x2-2x+y2-1=0,则直线l与C的位置关系是(  )
A、相切B、相交
C、相离D、不能确定
考点:直线与圆的位置关系
专题:直线与圆
分析:利用点到直线的距离公式求得圆心到直线的距离小于半径,可得直线和圆相交.
解答: 解:圆C的方程为x2-2x+y2-1=0 即 (x-1)2+y2=2,表示以(1,0)为圆心、半径r=
2
的圆.
求出圆心到直线的距离为d=
|k-0+1-k|
k2+1
=
1
k2+1
≤1<r,
故直线和圆相交,
故选:B.
点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B,C均为球面上3点,已知AB=5,BC=12,AC=13,平面ABC与球心距离为
3
R
2
,则R为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+a|x-1|+1,
(1)若a=1,求f(x)的值域;
(2)求f(x)在区间[1,3]上的最大值;
(3)若不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系上,设不等式组
x>0
y>0
y≤-n(x-3)
(n∈N*)所表示的平面区域为Dn,记Dn内的整点(即横,纵坐标均为整数的点)的个数为an(n∈N*
(1)求a1,a2,a3并猜想an的表达式;(不必证明)
(2)设数列{an}的前n项和为{Sn}数列{
1
Sn
}的前n项和为Tn,求使不等式Tn+an
k
17
对一切n∈N*都成立的最大正整数k的值.
(3)设n∈N*,f(n)=
an+2(n为奇数)
an+1(n为偶数)
问是否存在m∈N*,使f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-1
2x+1
,求f(x)在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

一艘轮船按北偏西30°方向以每小时30海里的速度从A处开始航行,此时灯塔M在轮船的北偏东45°方向上,经过40分钟后轮船到达B处,灯塔在轮船的东偏南15°方向上,则灯塔M到轮船起始位置A的距离是(  )海里.
A、
20
6
3
B、20
6
C、20
3
D、
20
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对某班级50名学生学习数学与学习物理的成绩进行调查,得到如表所示:
数学成绩较好数学成绩一般合计
物理成绩较好18725
物理成绩一般61925
合计242650
由K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,解得K2=
50×(18×19-6×7)2
25×25×24×26
≈11.5
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是(  )
A、在犯错误的概率不超过0.1%的前提下,认为“数学成绩与物理成绩有关”
B、在犯错误的概率不超过0.1%的前提下,认为“数学成绩与物理成绩无关”
C、有100%的把握认为“数学成绩与物理成绩有关”
D、有99%以上的把握认为“数学成绩与物理成绩无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

在?ABCD中,E是BA延长线上任一点,EC交AD于F,已知S△BCE=m,S△DCF=n,求平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数φ(x)、g(x0都是奇函数,f(x)=aφ(x)+bg(x)+2在(0,+∞)上有最大值5,则f(x)=aφ(x)+bg(x)+2在(-∞,0)上有最小值
 

查看答案和解析>>

同步练习册答案