精英家教网 > 高中数学 > 题目详情
已知椭圆的左焦点,为坐标原点,点在椭圆上,点在椭圆的右准线上,若,则椭圆的离心率为   

试题分析:因为,所以,又因为表示与同向的单位向量,所以的平分线上,所以四边形为菱形,所以,设点,因为点在椭圆的右准线上,则点,因为,所以,由因为,所以,代入坐标进行运算,结合,可以计算出椭圆的离心率为.
点评:解决本题的关键在于发现四边形为菱形,所以对角线互相垂直,从而转化成向量的数量积为0进行求解,本题运算量比较大,求解时要仔细.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线过定点(Q点除外),并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左、右两焦点分别为,点在椭圆上,
,则椭圆的离心率等于  (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离为5,求抛物线的方程和m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)双曲线C与椭圆有相同的焦点,直线y=的一条渐近线.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点(0,4)的直线,交双曲线于A,B两点,交x轴于点(点与的顶点不重合)。当 =,且时,求点的坐标

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与曲线相切于点,则的值为 (   )
A.-3B.9
C.-15 D.-7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知抛物线的焦点为,准线为,过上一点P作抛物线的两切线,切点分别为A、B,
(1)求证:
(2)求证:A、F、B三点共线;
(3)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F1,F2分别是椭圆 (a>0,b>0)的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该左半椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为(    )
A.B.C.D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点在轴上,长轴长是短轴长的两倍,则m的值为 (    )
A.     B.     C.D.

查看答案和解析>>

同步练习册答案