精英家教网 > 高中数学 > 题目详情
15.已知△ABC中,角A,B,C所对的边分别为a,b,c,a=1,b=$\sqrt{3}$,B=60°,那么角A等于(  )
A.30°B.45°C.60°D.90°

分析 由已知及正弦定理解得sinA,结合A是三角形的内角且a<b,可得A的大小.

解答 解:∵△ABC中,a=1,b=$\sqrt{3}$,B=60°,
∴由正弦定理得sinA=$\frac{asinB}{b}$=$\frac{1×sin60°}{\sqrt{3}}$=$\frac{1}{2}$,
∵A是三角形的内角,且a<b,
∴A=30°.
故选:A.

点评 本题给出三角形的两边和其中一边的对角,求另一边的对角.着重考查了正弦定理和特殊角的三角函数值等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.为贯彻“咬文嚼字抓理解,突出重点抓记忆”的学习思想.某校从高一年级和高二年级各选取100名同学进行现学段基本概念知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按[40,50),[50,60),[60,70),[70,80]分组,得到的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;(注:统计方法中,同一组数据常用该组区间的中点值作为代表)
(2)完成下面2×2列联表,并回答是否有99%的把握认为“两个年级学生现学段对基本知识的了解有差异”?
成绩小于60分人数成绩不小于60分人数合计
高一年级
高二年级
合计
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.临界值表:
P(K2≥k)0.100.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$,x∈R,则函数f(x)的最小值为-2,函数f(x)的递增区间为[$-\frac{π}{6}+kπ,\frac{π}{3}+kπ$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=-$\frac{1}{2}{x^2}$+4x-3lnx,则下列说法正确的是(  )
A.f(x)的单调递减区间为(1,3)B.x=3是函数f(x)的极小值点
C.f(x)的单调递减区间为(0,1)∪(3,+∞)D.x=1是函数f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.据新华社报道,强台风“蝴蝶”在广东登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,树的上半部分折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是(  )
A.$\frac{20\sqrt{6}}{3}$ 米B.10$\sqrt{6}$ 米C.$\frac{10\sqrt{6}}{3}$ 米D.20$\sqrt{2}$ 米

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=3,AD=4,AC=2$\sqrt{3}$,∠ADC=60°,E为线段PC上一点,且$\overrightarrow{PE}$=λ$\overrightarrow{PC}$.
(Ⅰ)求证:CD⊥AE; 
(Ⅱ)若平面PAB⊥平面PAD,直线AE与平面PBC所成的角的正弦值为$\frac{{3\sqrt{3}}}{8}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知θ∈(-$\frac{π}{2}$,$\frac{π}{2}$)且sinθ+cosθ=a,其中a∈(0,1),则tanθ的可能取值是(  )
A.-3B.3或$\frac{1}{3}$C.$-\frac{1}{3}$D.-3或$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的定义域为[-1,5],部分对应值如表.f(x)的导函数y=f′(x)的图象如图所示.
x-1045
f(x)1221
下列关于函数f(x)的命题说法正确的是(  )
A.函数y=f(x)是周期函数
B.当1<a<2时,函数y=f(x)-a有4个零点
C.如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4
D.函数f(x)在[0,2]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1=1,an+1=2an+1(n∈N*),则数列{nan}的前9项和为981.

查看答案和解析>>

同步练习册答案